Прогнозирование временных рядов — полезный метод науки о данных, который можно применять в самых разных отраслях и областях. Вот руководство по началу работы с основными концепциями, лежащими в его основе. Прогнозирование временных рядов — это задача прогнозирования будущих значений на основе исторических данных. Примеры из разных отраслей включают прогнозирование погоды, объемов продаж и цен на акции. Совсем недавно он был применен для прогнозирования ценовых тенденций для криптовалют, таких как биткойн и эфириум...
Временной ряд – совокупность Наблюдений (Observation), собранных за определенный временной интервал. Этот тип данных используется для поиска долгосрочного тренда, прогнозирования будущего и прочих видов анализа. В отличие от Датасетов (Dataset) без временных рядов в качестве Признаков (Feature), наборы с временными рядами не выполняют основное требование линейной регрессии о независимости наблюдений. Наряду с тенденцией увеличиваться или уменьшаться, большинство датасетов с временными рядами демонстрируют периодические (например, сезонные) тенденции...