Задача Рассмотрим все целочисленные комбинации a^b для 2 ≤ a ≤ 5 и 2 ≤ b ≤ 5: 2²=4, 2³=8, 2⁴=16, 2⁵=32
3²=9, 3³=27, 3⁴=81, 3⁵=243
4²=16, 4³=64, 4⁴=256, 4⁵=1024
5²=25, 5³=125, 5⁴=625, 5⁵=3125 Если их расположить в порядке возрастания, исключив повторения, мы получим следующую последовательность из 15 различных членов: 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 Сколько различных членов имеет последовательность a^b для 2 ≤ a ≤ 100 и 2 ≤ b ≤ 100? Замечания Если вы думаете про лобовой...
Для начала узнаем что такое комбинаторика. Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Комбинаторные мотивы можно заметить в символике китайской «Книги Перемен»(5 век до н.э.). По мнению её авторов, все в мире комбинируется из различных сочетаний мужского и женского начал, а также восьми стихий: земля, горы, вода, ветер, гроза, огонь, облака и небо. Большой интерес математиков вызывали магические квадраты. Некоторые элементы комбинаторики были известны в Индии еще во II в...