Метод математической индукции
Математическая индукция – работает в тех сферах, где количественные изменения не приводят к качественным скачкам.
Математическая индукция – работает в тех сферах, где количественные изменения не приводят к качественным скачкам. А вот что пишет создатель «технического мозга» Антонов В.М. [2]: Реальный физический мир, и в том числе технический, можно воспринимать интуитивно в целом, а можно – через дробление его на элементы, то есть логически. Пройдя по второму пути, логицисты предложили в качестве элементов – параметры, которые можно понимать как физические величины внешнего по отношению к человеку пространства, имеющие размерности, например масса в килограммах, расстояние в метрах, время в секундах...
Метод математической индукции
Метод математической индукции используется для доказательства утверждений, верных для всех натуральных чисел. Он работает по принципу домино. Сначала мы доказываем первое одно или несколько утверждений, то есть базу индукции. Затем мы делаем шаг индукции или переход — доказательство, что если наше утверждение верно для какого-то числа, то для следующего числа оно тоже будет верным. Между двумя натуральными числами никакие другие натуральные числа не прячутся, в отличие от действительных чисел, между которыми можно вместить бесконечность...