О ЗАДАЧАХ МАШИННОГО ОБУЧЕНИЯ ЗА 21 МИНУТУ || кластеризация, классификация, восстановление функции, редуцирование размерности пространства
Loss Function в Машинном обучении простыми словами
Функция потерь (Loss Function, Cost Function, Error Function; J) – фрагмент программного кода, который используется для оптимизации Алгоритма (Algorithm) Машинного обучения (ML). Значение, вычисленное такой функцией, называется «потерей». Функция (Function) потерь может дать бо́льшую практическую гибкость вашим Нейронным сетям (Neural Network) и будет определять, как именно выходные данные связаны с исходными. Нейронные сети могут выполнять несколько задач: от прогнозирования непрерывных значений, таких как ежемесячные расходы, до Бинарной классификации (Binary Classification) на кошек и собак...
Optimization в Машинном обучении простыми словами
Оптимизация – это процесс настройки Гиперпараметров (Hyperparameter) для минимизации Целевой функции (Cost Function). Иными словами, это набор методов совершенствования Модели (Model) Машинного обучения (ML). Чтобы справляться со своей основной задачей, модель использует такую функцию, обладающую множеством аргументов. Значение каждого из этих аргументов меняется в ходе оптимизации. Выражаясь простыми словами, на анимации ниже можно увидеть, как целевая функция под воздействием того или иного оптимизатора...