Начнем с определения. Точку назовем целой, если её координаты целые числа. Рассмотрим круг радиуса R. Сколько в нём целых точек? Давайте разбираться. Для удобства количество целых точек обозначим через K(R). При больших R число K(R) близко к площади круга. Рассмотрим величину Δ(R) равную K(R) – πR^2. Изучим поведение этой величины при стремлении R к бесконечности. Это и есть проблема Гаусса о числе целых точек в круге. Данная проблема является частным случаем более общей проблемы о числе целых точек...
Рассмотрим следующую последовательность где Hn – гармоническое число с номером n. Докажем, что у неё существует предел. Для этого воспользуемся теоремой Больцано–Коши–Вейерштрасса: докажем монотонное убывание и ограниченность снизу. 1. Монотонность. Рассмотрим разность соседних членов последовательности А теперь воспользуемся неравенством Откуда получим монотонное убывание нашей последовательности. 2. Ограниченность. Ограничим снизу возрастающей последовательностью и докажем, что возрастающая последовательность всегда меньше убывающей...