12,6 тыс читали · 3 года назад
Аппроксимация, экстраполяция, интерполяция. Для чего они нужны и как в них не запутаться.
Начну данную статью с того, что расскажу о том, что в природе не найти графика из учебника. Температура не может изменяться чисто по прямой или синусоиде. У неё будет свой график, и соотнести его с какой-либо ранее известной функцией будет достаточно сложно (невозможно). Например, реальный график уличной температуры будет выглядеть следующим образом: Различные колебания могут быть связаны с порывами ветра, помехами на линии (тут цифровой датчик, потому маловероятно). Но суть в том, что график уличной температуры мы не можем представить в виде одной или нескольких функций уличной температуры...
📝Анализ данных временных рядов: 5 советов Data Scientist’у
Одна из самых распространенных ошибок в анализе данных временных рядов, которую совершают новички – это предположение, что данные имеют регулярные точки и не содержат пропусков. На практике это обычно не подтверждается и приводит к неверным результатам. В реальных датасетах часто отсутствуют точки данных, а имеющиеся расположены неравномерно или непоследовательно. Поэтому перед анализом данных временных рядов следует провести этап предварительной подготовки: • Понять временной диапазон и детализацию временного ряда по точкам данных с помощью визуализации датасета; • Сравнить фактическое количество...