Машинное обучение на динамических графах (рассказывает Никита Северин)
ULTRA: базовые модели для формирования рассуждений на графах знаний
Источник: Nuances of Programming Обучение единой универсальной модели для решения произвольных наборов данных всегда было мечтой исследователей в области машинного обучения, особенно в эпоху базовых моделей. Хотя эти мечты уже осуществились в области восприятия, такой как изображения или естественные языки, остается открытой проблемой то, можно ли их воспроизвести в области рассуждений, например в графах. В этой публикации авторы доказывают, что существует универсальная модель рассуждения, по крайней мере, для графов знаний (KG)...
Простое руководство по визуализации данных в машинном обучении
Источник: Nuances of Programming Важным шагом в разработке моделей машинного обучения является оценка их эффективности. Выбор метрик для этих целей обычно зависит от типа проблемы, которую решает МО. Однако простое рассмотрение одного или двух чисел в отдельности не всегда позволяет принять правильное решение при подборе модели. Например, одна метрика ошибок не даст никакой информации о распределении ошибок. Она также не позволит ответить на вопрос, ошибается ли модель по-крупному небольшое количество раз или же она допускает множество более мелких ошибок...