7) ТАУ для чайников.Части 3.4 и 3.5 _ Передаточная функция. Преобразование Лапласа...
Для нахождения изображения по Лапласу линейно-нарастающего напряжения u(t) = αt нужно использовать преобразование Лапласа.
Преобразование Лапласа для функции f(t) определяется как: F(s) = \mathcal{L}{f(t)} = \int_{0}^{\infty} e^{-st} f(t) dt, где s — комплексная переменная. В нашем случае f(t) = u(t) = αt. Подставляя это в формулу преобразования Лапласа, получаем: U(s) = \mathcal{L}{αt} = α \cdot \int_{0}^{\infty} e^{-st} t dt. Теперь нужно вычислить этот интеграл. Для этого можно использовать метод интегрирования по частям: Пусть u = t$, тогда du = dt и dv = e^{-st} dt, тогда v = -\frac{1}{s}e^{-st}. Тогда интеграл...
МАТЕМАТИЧЕСКАЯ СТАТИСТИКА
(Теория вероятностей) 1. Лекция 1 (9.02.2021) Введение Пусть проводится эксперимент. По окончании проведения эксперимента наблюдаются результаты эксперимента. В теории вероятностей результаты эксперимента называют событиями или исходами. Если в результате эксперимента событие может произойти или не произойти, то событие является случайным (возможным). Говоря о случайном событии всегда подразумевается некоторый эксперимент, в результате которого это событие появилось. Важно уметь измерять вероятность появления случайного события в эксперименте...