Этой статьей хотелось бы завершить обсуждение знаменитого, очень известного и такого простого метода расчета СЛАУ, как метод Гаусса. Главное, что хотелось показать – это возможности распространенных компьютеров, их великолепное быстродействие и достаточную точность для огромного числа расчетов. Лично мне приходилось проводить расчеты электрических сетей высокого напряжения, расчеты теплопроводных трасс и многое другое. При этом стоит отметить, что точность расчета больше зависит от качества исходных данных, чем от ограничений сопроцессора...
Начнем с определения. Точку назовем целой, если её координаты целые числа. Рассмотрим круг радиуса R. Сколько в нём целых точек? Давайте разбираться. Для удобства количество целых точек обозначим через K(R). При больших R число K(R) близко к площади круга. Рассмотрим величину Δ(R) равную K(R) – πR^2. Изучим поведение этой величины при стремлении R к бесконечности. Это и есть проблема Гаусса о числе целых точек в круге. Данная проблема является частным случаем более общей проблемы о числе целых точек...