«Алгебра и теория пределов. Элективный курс» В. Е. Епихин Элективный курс предназначен для углубленного изучения математики. Излагаются основы теории множеств и математической логики, элементы аксиоматики действительных чисел, начала тригонометрии, теория приближений действительных чисел, комплексные числа, теория пределов, свойства функций, многочлены. Книга завершается доказательством основной теоремы алгебры. Изложение сопровождается примерами и упражнениями. В основу учебного пособия положен общий курс математики, который читается учащимся старших классов физико-математического лицея № 1580 при МГТУ им. Н.Э.Баумана. Для старшеклассников и учителей математики общеобразовательных школ, лицеев, гимназий, колледжей. Книга будет полезна преподавателям и слушателям подготовительных курсов, а также студентам младших курсов вузов. Это и многое другое вы найдете в книге Алгебра и теория пределов. Элективный курс (В. Е. Епихин). Напишите свою рецензию о книге В. Е. Епихин «Алгебра и теория пределов. Элективный курс» http://izbe.ru/book/85167-algebra-i-teoriya-predelov-elektivnyy-kurs-v-e-epihin/
Положения теории графов - это основные концепции и принципы, которые составляют основу изучения графов. Некоторые из важных положений теории графов включают: 1. Граф: Граф представляет собой абстрактную математическую структуру, состоящую из вершин (узлов) и рёбер (связей), соединяющих эти вершины. 2. Вершина и Ребро: Вершины графа представляют собой точки, а рёбра - линии, соединяющие вершины. Рёбра могут быть направленными или не направленными, в зависимости от того, есть ли у них определённое направление. 3. Смежные вершины: Вершины графа называются смежными, если они соединены ребром. Два ребра, которые имеют общую вершину, называются инцидентными. 4. Степень вершины: Степень вершины в графе определяется как количество рёбер, инцидентных данной вершине. Для направленных графов существует понятие входящей и исходящей степени. 5. Подграф: Подграф - это граф, который состоит из некоторых вершин и рёбер исходного графа, при условии сохранения связей между ними. 6. Связность: Граф называется связным, если между любыми двумя вершинами существует путь. В противном случае граф может быть несвязным и состоять из нескольких связанных компонент. 7. Цикл и Дерево: Цикл в графе - это последовательность вершин, в которой начальная вершина совпадает с конечной. Дерево - это связный ациклический граф.