Разбираемся простыми словами Машинное обучение — как секс в старших классах. Все говорят о нем по углам, единицы понимают, а занимается только препод. Статьи о машинном обучении делятся на два типа: это либо трёхтомники с формулами и теоремами, которые я ни разу не смог дочитать даже до середины, либо сказки об искусственном интеллекте, профессиях будущего и волшебных дата-саентистах. Решил сам написать пост, которого мне не хватало. Большое введение для тех, кто хочет наконец разобраться в машинном обучении — простым языком, без формул-теорем, зато с примерами реальных задач и их решений...
В этой статье мы разберемся, что такое машинное обучение, как оно работает, из каких компонентов состоит и как применяется на практике для решения сложных задач вроде распознавания образов, прогнозирования и классификации данных. Зачем нам машинное обучение В детективных фильмах следователям часто приходится в поисках улик просматривать многочасовые записи с камер видеонаблюдения. Если приметы подозреваемого (внешность, одежда) уже известны, задача упрощается. Но что, если преступника еще предстоит...