Теория множеств. Наука. Катющик ТВ
Аксиомы натуральных чисел
Аксиоматическое построение любой математической теории начинается с перечисления неопределяемых основных понятий (объектов и отношений) и аксиом, которым должны удовлетворять основные понятия. Профессор Туринского университета Джузеппе Пеано[1] в статье «О понятии числа» (1891 г.) сформулировал пять аксиом: С аксиоматической точки зрения приводятся два понятия: Эти понятия косвенно определяются системой аксиом. Существующая система аксиом по форме несколько отличается от вышеприведенной. Натуральные числа – это элементы всякого непустого множества N, в котором для некоторых элементов a и b установлено...
Краткая история бесконечности. Часть 2
Казалось бы, всё устаканилось, и можно строить математику на строгих и достоверных основаниях. Но история сказала на это «три раза ха». С конца XIX века и по сей день в математике творится такое, что Аристотелю не привиделось бы и в кошмаре. Сегодня у нас в программе: множество множеств, бесконечность бесконечностей, несколько парадоксов и один глобальный кризис оснований математики. Сделайте глубокий вдох и ныряйте под кат. Во второй половине XIX века Георг Кантор при поддержке Ричарда Дедекинда стал развивать теорию, которая впоследствии получила название «наивная теория множеств»...