ИИ на страже качества: интерпретируемые модели в фармацевтическом производстве
В условиях ужесточения требований регуляторов (FDA, EMA, PIC/S) и перехода к парадигме Quality by Design (QbD), фармацевтические предприятия ищут способы повысить предиктивность контроля качества и снизить риски несоответствий. Внедрение искусственного интеллекта в регулируемую среду часто сдерживается страхом перед «чёрными ящиками», сложностью валидации и несоответствием принципам GxP. Однако существуют решения, основанные на классических статистических методах и интерпретируемых моделях, которые не только соответствуют требованиям регуляторов, но и приносят измеримую пользу...