ТИП 1
№1
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 180 км. На следующий день он отправился обратно в A, увеличив скорость на 5 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.
№ 2
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 224 км. На следующий день он отправился обратно в A, увеличив скорость на 2 км/ч. По пути он сделал остановку на 2 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
№ 3
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 60 км. На следующий день он отправился обратно в A, увеличив скорость на 10 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.
№ 4
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 224 км. На следующий день он отправился обратно в A, увеличив скорость на 2 км/ч. По пути он сделал остановку на 2 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A.
№ 5
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 112 км. На следующий день он отправился обратно в A, увеличив скорость на 9 км/ч. По пути он сделал остановку на 4 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
№ 6
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 209 км. На следующий день он отправился обратно в A, увеличив скорость на 8 км/ч. По пути он сделал остановку на 8 часов, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
№ 7
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 60 км. На следующий день он отправился обратно в A, увеличив скорость на 10 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
№ 8
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 180 км. На следующий день он отправился обратно в A, увеличив скорость на 5 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B.
ТИП 2
№ 1
Два велосипедиста одновременно отправляются в 60-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
№ 2
Два велосипедиста одновременно отправляются в 209-километровый пробег. Первый едет со скоростью на 8 км/ч большей, чем второй, и прибывает к финишу на 8 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
№ 3
Два велосипедиста одновременно отправляются в 180-километровый пробег. Первый едет со скоростью на 5 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
№ 4
Два велосипедиста одновременно отправляются в 112-километровый пробег. Первый едет со скоростью на 9 км/ч большей, чем второй, и прибывает к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
№ 5
Два велосипедиста одновременно отправляются в 105-километровый пробег. Первый едет со скоростью на 16 км/ч большей, чем второй, и прибывает к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
№ 6
Два велосипедиста одновременно отправляются в 208-километровый пробег. Первый едет со скоростью на 3 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
№ 7
Два велосипедиста одновременно отправляются в 140-километровый пробег. Первый едет со скоростью на 6 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
№ 8
Два велосипедиста одновременно отправляются в 140-километровый пробег. Первый едет со скоростью на 14 км/ч большей, чем второй, и прибывает к финишу на 5 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
ТИП 3
№ 1
Два автомобиля одновременно отправляются в 540-километровый пробег. Первый едет со скоростью на 30 км/ч большей, чем второй, и прибывает к финишу на 3 ч раньше второго. Найдите скорость первого автомобиля.
№ 2
Два автомобиля одновременно отправляются в 600-километровый пробег. Первый едет со скоростью на 20 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля.
№ 3
Два автомобиля одновременно отправляются в 880-километровый пробег. Первый едет со скоростью на 30 км/ч большей, чем второй, и прибывает к финишу на 3 ч раньше второго. Найдите скорость первого автомобиля.
№ 4
Два автомобиля одновременно отправляются в 720-километровый пробег. Первый едет со скоростью на 30 км/ч большей, чем второй, и прибывает к финишу на 4 ч раньше второго. Найдите скорость первого автомобиля.
№ 5
Два автомобиля одновременно отправляются в 400-километровый пробег. Первый едет со скоростью на 20 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля.
№ 6
Два автомобиля одновременно отправляются в 900-километровый пробег. Первый едет со скоростью на 30 км/ч большей, чем второй, и прибывает к финишу на 5 ч раньше второго. Найдите скорость первого автомобиля.
№ 7
Два автомобиля одновременно отправляются в 990-километровый пробег. Первый едет со скоростью на 20 км/ч большей, чем второй, и прибывает к финишу на 2 ч раньше второго. Найдите скорость первого автомобиля.
№ 8
Два автомобиля одновременно отправляются в 560-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля.
ТИП 4
№ 1
Первые 350 км автомобиль ехал со скоростью 70 км/ч, следующие 105 км — со скоростью 35 км/ч, а последние 160 км — со скоростью 80 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 2
Первые 160 км автомобиль ехал со скоростью 80 км/ч, следующие 100 км — со скоростью 50 км/ч, а последние 360 км — со скоростью 90 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 3
Первые 330 км автомобиль ехал со скоростью 110 км/ч, следующие 105 км — со скоростью 35 км/ч, а последние 150 км — со скоростью 50 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 4
Первые 140 км автомобиль ехал со скоростью 70 км/ч, следующие 195 км — со скоростью 65 км/ч, а последние 225 км — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 5
Первые 300 км автомобиль ехал со скоростью 60 км/ч, следующие 300 км — со скоростью 100 км/ч, а последние 300 км — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 6
Первые 450 км автомобиль ехал со скоростью 90 км ч, следующие 230 км — со скоростью 115 км/ч, а последние 120 км — со скоростью 40 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 7
Первые 200 км автомобиль ехал со скоростью 50 км/ч, следующие 320 км — со скоростью 80 км/ч, а последние 140 км — со скоростью 35 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 8
Первые 200 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а последние 180 км — со скоростью 45 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
ТИП 5
№ 1
Первую половину пути автомобиль проехал со скоростью 36 км/ч, а вторую — со скоростью 99 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 2
Первую половину пути автомобиль проехал со скоростью 55 км/ч, а вторую — со скоростью 70 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 3
Первую половину пути автомобиль проехал со скоростью 84 км/ч, а вторую — со скоростью 108 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 4
Первую половину пути автомобиль проехал со скоростью 90 км/ч, а вторую — со скоростью 110 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 5
Первую половину пути автомобиль проехал со скоростью 42 км/ч, а вторую — со скоростью 48 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 6
Первую половину пути автомобиль проехал со скоростью 69 км/ч, а вторую — со скоростью 111 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 7
Первую половину пути автомобиль проехал со скоростью 60 км/ч, а вторую — со скоростью 90 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
№ 8
Первую половину пути автомобиль проехал со скоростью 54 км/ч, а вторую — со скоростью 90 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
ТИП 6
№ 1
Теплоход проходит по течению реки до пункта назначения 285 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 34 км/ч, стоянка длится 19 часов, а в пункт отправления теплоход возвращается через 36 часов после отплытия из него.
№ 2
Теплоход проходит по течению реки до пункта назначения 132 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 21 час, а в пункт отправления теплоход возвращается через 32 часа после отплытия из него.
№ 3
Теплоход проходит по течению реки до пункта назначения 140 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 11 часов, а в пункт отправления теплоход возвращается через 32 часа после отплытия из него.
№ 4
Теплоход проходит по течению реки до пункта назначения 165 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 26 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 18 часов после отплытия из него.
№ 5
Теплоход проходит по течению реки до пункта назначения 70 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 24 км/ч, стоянка длится 8 часов, а в пункт отправления теплоход возвращается через 14 часов после отплытия из него.
№ 6
Теплоход проходит по течению реки до пункта назначения 176 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 19 км/ч, стоянка длится 1 час, а в пункт отправления теплоход возвращается через 20 часов после отплытия из него.
№ 7
Теплоход проходит по течению реки до пункта назначения 210 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 9 часов, а в пункт отправления теплоход возвращается через 27 часов после отплытия из него.
№ 8
Теплоход проходит по течению реки до пункта назначения 280 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 15 часов, а в пункт отправления теплоход возвращается через 39 часов после отплытия из него.
ТИП 7
№ 1
Моторная лодка прошла против течения реки 132 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.
№ 2
Моторная лодка прошла против течения реки 208 км и вернулась в пункт отправления, затратив на обратный путь на 5 часов меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч.
№ 3
Моторная лодка прошла против течения реки 72 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч.
№ 4
Моторная лодка прошла против течения реки 297 км и вернулась в пункт отправления, затратив на обратный путь на 3 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 2 км/ч.
№ 5
Баржа прошла по течению реки 56 км и, повернув обратно, прошла ещё 54 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
№ 6
Баржа прошла по течению реки 80 км и, повернув обратно, прошла ещё 60 км, затратив на весь путь 10 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
№ 7
Баржа прошла по течению реки 32 км и, повернув обратно, прошла ещё 24 км, затратив на весь путь 4 часа. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
№ 8
Баржа прошла по течению реки 40 км и, повернув обратно, прошла ещё 30 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч.
ТИП 8
№ 1
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 4 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 11 км/ч меньше скорости второго.
№ 2
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 4 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 6 минут назад. Найдите скорость первого бегуна, если известно, что она на 6 км/ч меньше скорости второго.
№ 3
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставался 1 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 15 минут назад. Найдите скорость первого бегуна, если известно, что она на 5 км/ч меньше скорости второго.
№ 4
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставался 1 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 7 км/ч меньше скорости второго.
№ 5
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 2 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 9 минут назад. Найдите скорость первого бегуна, если известно, что она на 5 км/ч меньше скорости второго.
№ 6
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставался 1 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 20 минут назад. Найдите скорость первого бегуна, если известно, что она на 8 км/ч меньше скорости второго.
№ 7
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 3 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 6 минут назад. Найдите скорость первого бегуна, если известно, что она на 5 км/ч меньше скорости второго.
№ 8
Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 7 км до окончания первого круга, ему сообщили, что второй бегун пробежал первый круг 3 минуты назад. Найдите скорость первого бегуна, если известно, что она на 8 км/ч меньше скорости второго.
ТИП 9
№ 1
Поезд, двигаясь равномерно со скоростью 75 км/ч, проезжает мимо пешехода, идущего по платформе параллельно путям со скоростью 3 км/ч навстречу поезду, за 30 секунд. Найдите длину поезда в метрах.
№ 2
Поезд, двигаясь равномерно со скоростью 51 км/ч, проезжает мимо пешехода, идущего по платформе параллельно путям со скоростью 3 км/ч навстречу поезду, за 50 секунд. Найдите длину поезда в метрах.
№ 3
Поезд, двигаясь равномерно со скоростью 129 км/ч, проезжает мимо пешехода, идущего по платформе параллельно путям со скоростью 6 км/ч навстречу поезду, за 8 секунд. Найдите длину поезда в метрах.
№ 4
Поезд, двигаясь равномерно со скоростью 57 км/ч, проезжает мимо пешехода, идущего по платформе параллельно путям со скоростью 3 км/ч навстречу поезду, за 36 секунд. Найдите длину поезда в метрах.
№ 5
Поезд, двигаясь равномерно со скоростью 78 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям по платформе со скоростью 6 км/ч, за 10 секунд. Найдите длину поезда в метрах.
№ 6
Поезд, двигаясь равномерно со скоростью 93 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям по платформе со скоростью 3 км/ч, за 24 секунды. Найдите длину поезда в метрах.
№ 7
Поезд, двигаясь равномерно со скоростью 86 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям по платформе со скоростью 6 км/ч, за 18 секунд. Найдите длину поезда в метрах.
№ 8
Поезд, двигаясь равномерно со скоростью 93 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям по платформе со скоростью 3 км/ч, за 8 секунд. Найдите длину поезда в метрах.
ТИП 10
№ 1
Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 180 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
№ 2
Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 216 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
№ 3
Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 216 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
№ 4
Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
№ 5
Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 200 деталей, на 2 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
№ 6
Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
№ 7
Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 180 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
№ 8
Первый рабочий за час делает на 13 деталей больше, чем второй, и выполняет заказ, состоящий из 208 деталей, на 8 часов быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?
ТИП 11
№ 1
Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 105 литров она заполняет на 4 минуты дольше, чем вторая труба?
№ 2
Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 100 литров она заполняет на 6 минуты дольше, чем вторая труба?
№ 3
Первая труба пропускает на 9 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 112 литров она заполняет на 4 минуты быстрее, чем первая труба?
№ 4
Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 100 литров она заполняет на 6 минут быстрее, чем первая труба?
№ 5
Первая труба пропускает на 13 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 208 литров она заполняет на 8 минут быстрее, чем первая труба?
№ 6
Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты быстрее, чем первая труба?
№ 7
Первая труба пропускает на 3 литра воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 260 литров она заполняет на 6 минут дольше, чем вторая труба?
№ 8
Первая труба пропускает на 6 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 140 литров она заполняет на 3 минуты дольше, чем вторая труба?
ТИП 12
№ 1
Свежие фрукты содержат 86% воды, а высушенные — 23%. Сколько сухих фруктов получится из 341 кг свежих фруктов?
№ 2
Свежие фрукты содержат 85% воды, а высушенные — 16%. Сколько сухих фруктов получится из 420 кг свежих фруктов?
№ 3
Свежие фрукты содержат 81% воды, а высушенные — 16%. Сколько сухих фруктов получится из 420 кг свежих фруктов?
№ 4
Свежие фрукты содержат 86% воды, а высушенные — 23%. Сколько сухих фруктов получится из 396 кг свежих фруктов?
№ 5
Свежие фрукты содержат 88% воды, а высушенные — 30%. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?
№ 6
Свежие фрукты содержат 86% воды, а высушенные — 18%. Сколько требуется свежих фруктов для приготовления 35 кг высушенных фруктов?
№ 7
Свежие фрукты содержат 86% воды, а высушенные — 24%. Сколько требуется свежих фруктов для приготовления 42 кг высушенных фруктов?
№ 8
Свежие фрукты содержат 87% воды, а высушенные — 22%. Сколько требуется свежих фруктов для приготовления 49 кг высушенных фруктов?
ТИП 13
№ 1
Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько процентов кислоты содержится в первом растворе?
№ 2
Имеются два сосуда, содержащие 40 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 33% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 47% кислоты. Сколько килограммов кислоты содержится в первом растворе?
№ 3
Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?
№ 4
Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?
№ 5
Имеются два сосуда, содержащие 40 кг и 30 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 73% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 72% кислоты. Сколько килограммов кислоты содержится во втором растворе?
№ 6
Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?
№ 7
Имеются два сосуда, содержащие 24 кг и 26 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 39% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится в первом растворе?
№ 8
Имеются два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 83% кислоты. Сколько килограммов кислоты содержится во втором растворе?