Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами[1]. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на: Расширением векторного исчисления является тензорное исчисление, изучающее тензоры и тензорные поля. Тензорное исчисление в свою очередь разделяется на тензорную алгебру (входящую в качестве основной части в полилинейную алгебру) и тензорный анализ, изучающий дифференциальные операторы на алгебре тензорных полей. Тензорное исчисление является составной частью дифференциальной геометрии, используемой, в том числе, в современной теоретической физике[2]. В данном разделе векторного исчисления изучаются свойства линейных операций с векторами: сложение, умножение векторов на число, различные произведения векторов — скалярное, псевдоскалярное, векторное, смешанное, двойное векторное и т. д.[3]. В приложении к аналитической геометрии исследуются геометриче