Найти в Дзене

Расчет эксцентрикового зажима

Друзья приветствую Вас!

В этой статье я расскажу Вам как рассчитать эксцентриковый зажим.

Простые в изготовлении, обладающие большим коэффициентом усиления, достаточно компактные эксцентриковые зажимы, являясь разновидностью кулачковых механизмов, обладают еще одним, несомненно, главным своим преимуществом – быстродействием.

Рабочую поверхность кулачка чаще всего выполняют в виде цилиндра с окружностью или спиралью Архимеда в основании. В данной статье речь пойдет о более распространенном и более технологичном в изготовлении круглом эксцентриковом зажиме.

Размеры стандартизованных кулачков эксцентриковых круглых для станочных приспособлений приведены в ГОСТ 9061-68. Эксцентриситет круглых кулачков в этом документе задан равным 1/20 от наружного диаметра для обеспечения условия самоторможения во всем рабочем диапазоне углов поворота при коэффициенте трения 0,1 и более.

На рисунке ниже показана расчетная геометрическая схема механизма зажима. К опорной поверхности прижимается фиксируемая деталь в результате поворота за рукоятку эксцентрика против часовой стрелки вокруг жестко закрепленной относительно опоры оси.

Показанное положение механизма характеризуется максимально возможным углом α, при этом прямая, проходящая через ось вращения и центр окружности эксцентрика перпендикулярна прямой, проведенной через точку контакта детали с кулачком и точку центра наружной окружности.

Если повернуть кулачок на 90° по часовой стрелке относительно изображенного на схеме положения, то между деталью и рабочей поверхностью эксцентрика образуется зазор равный по величине эксцентриситету e. Этот зазор необходим для свободной установки и снятия детали.

РАСЧЕТНЫЕ ФОРМУЛЫ

Находим угол трения (°) "деталь - эксцентрик":

φ1= arctg (f1),

где,
f1 - коэффициент трения "деталь - эксцентрик";
0,15 - значение коэффициента трения «деталь - эксцентрик» соответствующее случаю «сталь по стали без смазки».

Находим угол трения (°) "ось - эксцентрик":

φ2= arctg (f2),

где,
f2 - коэффициент трения "ось - эксцентрик";
0,12 - значение коэффициента трения «ось - эксцентрик» соответствующее случаю «сталь по стали со смазкой».

Уменьшение трения в обоих местах повышает силовую эффективность механизма, но уменьшение трения в области контакта детали и кулачка ведет к исчезновению самоторможения.

Находим максимальный угол (°) кругового клина:

α = arctg (2 · e / D),

где,
e - эксцентриситет кулачка, мм;
для обеспечения самоторможения на стальных поверхностях желательно выполнять условие: D/e>15.
В ГОСТ 9061-68: D/e=20.
D - диаметр эксцентрика, мм.

Тогда радиус-вектор (мм) точки контакта будет равен:

R = D / (2 · cos (α)),

А расстояние от оси эксцентрика до опоры (мм) соответственно будет:

А = s + R · cos(α),

где,
s - толщина зажимаемой детали, мм.

Условием самоторможения является выполнение соотношения:

e ≤ R · f1 + d/2 · f2,

Если условие выполняется – самоторможение обеспечивается.

Усилие зажима (Н) можно найти по формуле:

F = P · L · cos (α) / (R · tg (α + φ1) + d/2 · tg (φ2)),

где,
P - усилие на рукоятке, Н;
L - длина рукоятки, мм.

Коэффициент передачи силы равен:

k = F / P

Выбранное для расчетов и изображенное на схеме положение эксцентрикового зажима является самым «невыгодным» с точки зрения самоторможения и выигрыша в силе. Но выбор такой не случаен. Если в таком рабочем положении рассчитанные силовые и геометрические параметры удовлетворяют разработчика, то в любых иных положениях эксцентриковый зажим будет обладать еще большим коэффициентом передачи силы и лучшими условиями самоторможения.

Уход при проектировании от рассмотренного положения в сторону уменьшения размера A при сохранении без изменений прочих размеров приведет к уменьшению зазора для установки детали.

Увеличение размера A может создать ситуацию при износе в процессе эксплуатации эксцентрика и значительных колебаниях толщины s, когда зажать деталь окажется просто невозможно.

Материалом для изготовления кулачка ГОСТ 9061-68 рекомендует использовать износостойкую поверхностно-цементированную сталь 20Х с поверхностной твердостью 56...61 HRC на глубине 0,8...1,2 мм. Но на практике эксцентриковый зажим выполняют из самых разнообразных материалов в зависимости от назначения, условий эксплуатации и располагаемых технологических возможностей.

Используя небольшую таблицу в MS Excel, созданную на основе этих формул, можно научиться быстро и просто определять главные параметры зажимов для кулачков из любых материалов, только нужно не забывать изменять в исходных данных значения коэффициентов трения.

-2

В примере, показанном на скриншоте, по заданным размерам эксцентрика и силе, приложенной к рукоятке, определяется монтажный размер от оси вращения кулачка до опорной поверхности с учетом толщины детали, проверяется условие самоторможения, вычисляются усилие зажима и коэффициент передачи силы.

Подписывайтесь и успехов в работе. Главный конструктор «КБ Семёнова» - Михаил Викторович Семёнов.