Найти в Дзене
Учись Легко

Как понять квадратные корни за 5 минут: 7 секретов, которые делают математику проще

Оглавление

Знакомо: смотришь на √16 и вдруг в голове — туман? А что если я скажу, что квадратные корни можно освоить без зубрёжки, всего за несколько минут в день? Сегодня разберёмся, как реально понять их свойства и применять сразу на практике.

✔ Наша группа ВК заходите и подписывайтесь: 👉 ВК Учись Легко
✔ Наш Telegram-канал с новостями, подписывайтесь: 👉 Учись Легко

Что такое квадратный корень и почему он такой “капризный”

Квадратный корень числа — это то число, которое при умножении на себя даёт исходное. Например, √25 = 5, потому что 5*5 = 25.

Но школьники часто путаются: можно ли √(a*b) = √a * √b? Или √(a+b) = √a + √b? Давайте разберём всё по полочкам.

Свойство 1: Корни “любят” умножение и деление

  • √(a*b) = √a * √b
  • √(a/b) = √a / √b

Пример: √(169) = √16 * √9 = 43 = 12. Лайфхак: всегда проверяйте, можно ли разложить число на множители — так считать быстрее.

Совет: на контрольной вместо того, чтобы возиться с длинными числами, сначала разложите их на простые множители.

Свойство 2: Корни “не дружат” с сложением

Очень важное: √(a+b) ≠ √a + √b.

Пример: √(9+16) = √25 = 5, а √9 + √16 = 3+4 = 7. Ошибка почти у всех в классе.

Тут важный момент: если видите знак + под корнем, сначала считаете сумму, потом извлекаете корень.

Свойство 3: Корень от квадрата числа = модуль числа

  • √(a²) = |a|

Пример: √((-5)²) = √25 = 5, не -5!

Совет: используйте это свойство при упрощении выражений — избавит от лишних ошибок и сэкономит время.

Свойство 4: Сокращение дробей под корнем

  • √(a²/b²) = a/b

Пример: √(36/49) = √36 / √49 = 6/7.

Лайфхак: если видите дробь под корнем, всегда пробуйте разложить числитель и знаменатель. Так решать быстрее и без калькулятора.

Свойство 5: Корни и отрицательные числа

  • √a существует только для a ≥ 0 (если говорим о действительных числах).
  • Для отрицательных чисел появится “i” — комплексная единица.

Пример: √(-4) = 2i.

Совет: если готовитесь к школьным задачам, пока не нужно бояться i — просто помните, что отрицательные под корнем “не входят” в обычные решения.

Свойство 6: Сокращение и упрощение выражений

  • √(50) = √(25*2) = 5√2
  • √(72) = √(36*2) = 6√2

Лайфхак: всегда ищите полные квадраты в числе. Это экономит время и силы.

Свойство 7: Практика делает корни простыми

Простейший способ запомнить свойства — практика: берёте любое число, раскладываете на множители, проверяете свойства. 10 минут в день — и вы уже видите результат.

А что думаете вы о свойствах квадратных корней? Какие лайфхаки помогают вам в учебе? Пишите в комментариях, делитесь своими приёмами, ставьте лайки и подписывайтесь, чтобы не пропустить ещё больше секретов лёгкой математики!

⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮
🎓 Популярные онлайн-сервисы для образования и подготовки к экзаменам:

✔ Наша группа ВК заходите и подписывайтесь: 👉 ВК Учись Легко
⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮ Реклама: ООО "ФОКСФОРД" ИНН: 7726464100, ООО "Сотка" ИНН 4703075007, ОАНО ДПО «СКАЕНГ» ИНН: 9709022748, ООО "Мобильное Образование" ИНН: 7736641912