Дорогой выпускник!
Прежде чем начать чиать статью, советуем тебе подписаться на наш канал сливов официальных заданий и ответов с 99% гарантией на достоверность материалов!
У нас ты найдёшь:
– Готовые и удобные шпаргалки — абсолютно бесплатно
– Бесплатные и реальные задания по всем предметам в общем чате
– Полезную информацию и лайфхаки для активных подписчиков
– Отзывы от реальных учеников, которые уже сдали экзамены с нашей помощью
– Материалы по всем регионам России — всё в наличии и актуально!
Подпишись на наш телеграм-канал и сдай экзамен на отлично, желаем удачи всем выпускникам♡
_____________________________
ЕГЭ по математике Профильного уровня в 2025 году содержит 19 задач.
Первые 12 задач – с кратким ответом, условно мы их называем «Первая часть».
Задания 13 – 19 – с развернутым ответом, или «Вторая часть ЕГЭ по математике».
__________________________
Часть 1
Задание №1
Это одно из сложных заданий первой части Профильного ЕГЭ по математике. Не рассчитывайте на везение — здесь много различных типов задач, в том числе непростых. Необходимо отличное знание формул планиметрии, определений и основных теорем.
Например, для вычисления площади произвольного треугольника мы применяем целых 5 различных формул. Cколько из них вы помните?
Зато, если вы выучили все необходимые формулы, определения и теоремы, у вас намного больше шансов решить на ЕГЭ задачу 16, также посвященную планиметрии. Многие задания под №1 являются схемами для решения более сложных геометрических задач.
Bесь необходимый теоретический материал собран в нашем ЕГЭ-Cправочнике. Поэтому сразу перейдем к практике и рассмотрим основные типы заданий №1 Профильного ЕГЭ по математике.
Задание №2
Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?
А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.
Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».
Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.
Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения (вектор) g⃗ направлено к поверхности Земли, а величина его равна 9,8 м/с2. Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.
Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной: (вектор) а
Задание №3
Задание 3 Профильного ЕГЭ по математике – это основы стереометрии. Это задачи на вычисление объемов и площадей поверхности многогранников и тел вращения.
Запоминаем один из главных лайфхаков решения задач по стереометрии:
Например:
Во сколько раз увеличится площадь поверхности и объем куба, если его ребро увеличить в два раза?
Отношение площадей поверхности подобных тел равно квадрату коэффициента подобия, а отношение объемов – кубу коэффициента подобия. При увеличении ребра в 2 раза площадь поверхности увеличится в 4 раза, а объем – в 8 раз.
Задание №4
Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.
В фирме такси в данный момент свободно 15 машин:
2 красных, 9 желтых и 4 зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.
Всего имеется 15 машин, то есть к заказчице приедет одна из пятнадцати. Желтых — девять, и значит, вероятность приезда именно желтой машины равна 9/15, то есть 0,6.
Задание №5
Теория вероятностей. Повышенный уровень сложности
Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?
Решение:
Выпишем возможные исходы как тройки чисел так, чтобы в сумме получилось 6.
Всего 10 возможных исходов. Благоприятные исходы помечены красным цветом, их 6.
По определению вероятности получаем:
Р= 6/10=0,6
Задание №6
В задании №6 варианта ЕГЭ вам встретятся всевозможные уравнения: квадратные и сводящиеся к квадратным, дробно-рациональные, иррациональные, степенные, показательные и логарифмические и даже тригонометрические. Видите, как много нужно знать, чтобы справиться с заданием! И еще ловушки и «подводные камни», которые ждут вас в самом неожиданном месте.
Вот список тем, которые стоит повторить:
Квадратные уравнения
Арифметический квадратный корень
Корни и степени
Показательная функция
Показательные уравнения
Логарифмическая функция
Логарифмические уравнения
Тригонометрический круг
Формулы приведения
Формулы тригонометрии
Простейшие тригонометрические уравнения 1
Задание №7
Вычисления и преобразования
Есть в Профильном ЕГЭ по математике, и даже в первой его части, такие задачи, для решения которых нужно знать ВСЁ. То есть всю школьную программу алгебры, с 5 класса до 11. Или почти всю.
Например, задание №7 Профильного ЕГЭ по математике – вычисления и преобразования. Вам могут встретиться и совсем простые задачи (на сложение дробей), и задания, которые не решить без подготовки. Например, вычисление и преобразование иррациональных выражений, тригонометрических, логарифмических. Задачи на определение модуля и понятие функции. В общем, типов задач здесь множество, по всему курсу алгебры.
И помните, что в ответе в заданиях первой части Профильного ЕГЭ по математике у вас должны получаться целые числа или конечные десятичные дроби.
Если вам встретится такое задание на ЕГЭ – значит, повезло!
Задание №8
Производная. Поведение функции. Первообразная — профильный ЕГЭ по Математике
Необходимая теория:
Производная функции
Таблица производных
Первообразная функции
Задание 8 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.
Геометрический смысл производной
Вспомним, что производная — это скорость изменения функции.
Производная функции f(x) в точке
x0 равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.
f(x0)=tg(a)#k
Если хотите увидеть продолжение подпишитесь на наш канал и покажите актив (нажмите на ссылку для перехода на наш канал)
Жду от вас актива и продолжим разбор!