Найти в Дзене

Урок 3. Квантовые вентили

Начнем с основ — с обозначений некоторых распространенных квантовых состояний, которыми мы будем впоследствии манипулировать: Все они являются чистыми однокубитными состояниями, поэтому их можно представить в виде точек на сфере Блоха: Теперь — четыре состояния Белла (их еще называют парами ЭПР, в честь Эйнштейна, Подольского и Розена — именно они являются авторами идей, которые впоследствии развил Белл). Это простейшие примеры квантовой запутанности двух кубитов: И наконец, мы будем использовать так называемые состояния ГХЦ (Гринберга — Хорна — Цайлингера). Вот их общая форма (для n кубитов) и простейшая форма (для трех кубитов): Состояния Белла и состояния ГХЦ очень важны, потому что их поведение кардинально отличается от предсказаний классической теории из-за уровня запутанности в таких системах (этот принцип «максимальной запутанности» будет рассмотрен в одной из последующих публикаций). Углы поворота в теории квантовых вычислений измеряются в радианах. Полная окружность (360°) соо
Оглавление

Начнем с основ — с обозначений некоторых распространенных квантовых состояний, которыми мы будем впоследствии манипулировать:

Некоторые распространенные квантовые состояния
Некоторые распространенные квантовые состояния

Все они являются чистыми однокубитными состояниями, поэтому их можно представить в виде точек на сфере Блоха:

-2

Теперь — четыре состояния Белла (их еще называют парами ЭПР, в честь Эйнштейна, Подольского и Розена — именно они являются авторами идей, которые впоследствии развил Белл). Это простейшие примеры квантовой запутанности двух кубитов:

-3

И наконец, мы будем использовать так называемые состояния ГХЦ (Гринберга — Хорна — Цайлингера). Вот их общая форма (для n кубитов) и простейшая форма (для трех кубитов):

-4

Состояния Белла и состояния ГХЦ очень важны, потому что их поведение кардинально отличается от предсказаний классической теории из-за уровня запутанности в таких системах (этот принцип «максимальной запутанности» будет рассмотрен в одной из последующих публикаций).

Основы: радианы

Углы поворота в теории квантовых вычислений измеряются в радианах. Полная окружность (360°) соответствует 2π радиан. Углы измеряются против часовой стрелки. Ниже показаны величины важнейших углов в градусах и в радианах.

-5

Основы: диаграммы квантовых цепей

Перед тем как углубляться в изучение квантовых вентилей, следует изучить основы построения диаграмм квантовых цепей:

  • Время на квантовой диаграмме движется слева направо.
  • Каждому кубиту соответствует одиночная горизонтальная линия.
  • Вентили обычно обозначаются квадратами. Тип вентиля обозначается буквами или другими символами в этом квадрате (бывают и исключения из этого правила. Обычно это кубитные вентили, у которых есть классические аналоги (пример — вентиль NOT)).
  • Некоторым вентилям может соответствовать несколько элементов диаграммы (пример — вентиль NOT).
  • В результате измерения кубита все суперпозиции коллапсируют, квантовые свойства кубита исчезают, и он превращается в обычный бит. Поэтому можно считать, что измерительный элемент (показанный ниже) принимает на вход кубит и выдает классический бит.

Вот обозначения важнейших элементов:

-6

Более подробная информация приводится в документации здесь и в книге М. Нильсена и И. Чанг «Квантовая информация и квантовые вычисления».

Линейные операторы

-7

Унитарность

-8

Обратимость

-9
-10

Однокубитные вентили

Однокубитные вентили закономерно являются самыми простыми, поэтому мы начнем с них. Операцию, выполняемую любым однокубитным вентилем, можно представить как поворот вектора, характеризующего состояние кубита, в другую точку сферы Блоха (см. ниже).

Самые элементарные однокубитные вентили — это вентили Паули X, Y и Z:

-11

Вентиль X очень похож на классический вентиль NOT: он преобразует |0〉 в |1〉, а |1〉 в |0〉. Эта операция эквивалентна повороту вектора на сфере Блоха вокруг оси x на π радиан (или 180°).

Вентиль Y ожидаемо соответствует повороту вектора вокруг оси y на π радиан. В результате такой операции вектор |0〉 превращается в i|1〉, а |1〉 — в -i|0〉.

-12

Ниже работа этих преобразований проиллюстрирована с помощью сферы Блоха (ось вращения в каждом случае выделена красным).

Илюстрация вентилей Паули X, Паули Y и Паули Z
Илюстрация вентилей Паули X, Паули Y и Паули Z

Важно отметить, что после двукратного применения одного и того же вентиля Паули к кубиту он перейдет в исходное состояние (потому что после поворота вектора на 2π радиан или 360° вокруг любой оси он перейдет в начальное положение). Как следствие,

-14

Здесь II — обозначение единичной матрицы:

-15
-16

Ввиду этого отношения говорят, что матрица Паули в квадрате равна единичной матрице.
Ниже приводится описание еще нескольких важных однокубитных вентилей.

-17

Вентиль Адамара особенно важен, потому что с его помощью можно создать суперпозицию состояний |0〉 и |1〉. Эту операцию проще всего визуализировать с помощью сферы Блоха как поворот вокруг оси x на π радиан (180°) с последующим поворотом вокруг оси y (по часовой стрелке) на π/2 радиан (90°):

-18
-19
-20

Многокубитные вентили

Многокубитные вентили выполняют операции над двумя или более кубитами. Один из простейших примеров — вентиль SWAP:

-21

Вентиль SWAP меняет местами два входных кубита. Например, SWAP|0〉|1〉 = |1〉|0〉, а SWAP|0〉|0〉 = |0〉|0〉.

Еще один класс многокубитных вентилей — так называемые управляемые вентили. На вход любого управляемого вентиля подается по меньшей мере один управляющий и один управляемый кубит, причем вентиль выполнит операцию над управляемым кубитом только в том случае, если управляющий кубит находится в определенном состоянии.

Вентили, которые выполняют операцию при управляющем кубите |1〉, обозначаются заполненным кругом на проводе управляющего кубита. Вентили, которые выполняют операцию при управляющем кубите, равном |0〉, обозначаются пустой окружностью, как показано ниже.

-22

Для того чтобы составить матрицу любого управляющего вентиля, нужно дописать единичную матрицу в левом верхнем углу матрицы нужного вентиля, а все остальные ячейки заполнить нулями. Вот пример:

-23

Ниже описаны другие распространенные управляемые вентили (мы выделили единичную матрицу красным, а матрицу исходного вентиля — синим, как выше):

-24

Универсальные наборы

Как мы уже упоминали в предыдущей публикации, вне зависимости от того, с помощью какой физической системы мы имитируем квантовый компьютер, должна иметься возможность реализовать «универсальный набор» вентилей. Это значит, что любая допустимая вычислительная операция в нашей системе должна быть преобразуема к конечной последовательности известных вентилей. Вот пример такого универсального набора: вентиль Адамара, вентиль фазового сдвига, вентиль CNOT и вентиль π⁄8.

Свойство универсальности гораздо интереснее, чем может показаться на первый взгляд. Если в квантовом компьютере существует универсальный набор вентилей, то любое преобразование, которое допускают законы квантовой физики, можно реализовать с его помощью. Это значит, что с помощью универсального набора можно не просто выполнить любую квантовую программу, а имитировать любое физическое явление. Поэтому свойство универсальности позволяет использовать квантовые компьютеры для моделирования молекул, сверхпроводников и любых странных и прекрасных квантовых систем. Эта особенность квантовых компьютеров позволяет имитировать физические явления, что в перспективе позволит квантовым системам превзойти потенциал самых мощных суперкомпьютеров. Уже не скучно, правда?