2,8K подписчиков

Метод пристального всматривания

317 прочитали

Я не взаправдашний математик, а физик, вулканолог и немного енот, использующий математику как инструмент. Но я этот свой инструмент очень люблю. Он красивый, изящный и мощный. Владение им делает меня счастливым и даже немного гордым от причастности к великим людям, создававшим его на протяжении столетий. Но при всем при том математика — инструмент, требующий особого к себе отношения. Она подобна породистой лошади или дорогому автомобилю, а то и легкомоторному самолёту. Без умения, особого подхода и, если хотите, уважения к себе они испортятся и гордость от владения ими сменится горечью утраты. Конечно, я утрирую, но что-то в этом есть. Я имею в виду, что с математикой можно играть, а не только использовать в серьёзной работе. Но в обоих случаях нужно как можно дольше оставаться настоящим математиком и ценить драгоценную точность и полноту результатов.

В конце концов я доигрался до целой книжки по теории вероятностей, некоторые главы из которой можно найти в этом блоге. В одной из глав, посвящённой дедлайнам и цейтнотам, мы встречаемся с не самым популярным распределением Стирлинга, о котором я подробно писал здесь.

Имитационное моделирование позволило мне получить выразительную и наглядную экспериментальную гистограмму, отражающую распределение числа последовательных дел, которые можно завершить в ограниченный срок. В принципе, на этом результате можно было бы и остановиться, гистограмма прекрасно иллюстрировала мои рассуждения, а поскольку моя книга, скорее развлекательная, а не учебная или научная, то зачем упираться с доказательством! Но, поверьте, я просто не смог этого сделать: отсутствие точного решения не давало мне покоя. Я готов был вообще выбросить этот эпизод из книги — и не потому, что не верил в точность результата, а потому что не считал это каким-то результатом. Я исписал множество листов, пытаясь вывести точную формулу, но ничего не выходило! Повторю, я не настоящий математик, у которого есть последовательное базовое математическое образование. Мне недоставало не инструментария или методик — я легко отыскивал их в учебниках и статьях. Но они заводили меня в дебри и тупики. Мне не хватало интуиции математика — той самой штуки, которая либо возникает от многих лет непрестанной работы, постоянного поиска внутренних связей и закономерностей, либо даётся от рождения, примерами чего могут быть такие потрясающие люди, как Сриниваса Рамануджан Айенгор или Карл Фридрих Гаусс. Но большинство великих, замечательных и просто видных математиков были вооружены не врождённым талантом, а любовью к этой науке, предельной честностью перед собой и, главное, невероятным трудолюбием, благодаря которым их математическая интуиция превращалась в самую настоящую магию! И я убеждён, что она доступна всем, но требует непрестанных упражнений: как говорили в моем родном Новосибирском государственном университете, «приседания мозгами». А силу для этих упражнений может дать только любовь. Ни чувство долга, ни страх провалить сессию, ни осознание полезности математики как инструмента не станут достаточной мотивацией для такой удивительно кропотливой, незаметной и чаще всего непрактичной работы.

Задачка из моей книжки вряд ли спасёт чьи-то жизни или принесёт мне славу и много денег, но без точного результата я чувствовал себя не вправе говорить о ней, поэтому я вновь и вновь выписывал столбцы известных мне точных значений функции вероятности, дополняя эмпирическими цифрами, приведёнными к рациональному виду (мне быстро стало ясно, что нормировкой искомой функции будет n!), пытаясь то угадать закономерность, то получить ее, подходя так или эдак. В конце концов решение пришло ко мне так же, как решения больших и чудовищно сложных задач приходят к настоящим математикам. Итогом моего пристального всматривания и вживания в ряды чисел стала искра интуиции. Блуждая уже практически бесцельно по страницам справочника комбинаторики, я наткнулся на числа Стирлинга, о существовании которых до этого и не подозревал. Они происходят из совсем другой задачи и поначалу вызвали просто любопытство. Хорошо, что в справочнике приводились некоторые примеры рядов этих чисел. Мой взгляд выхватил знакомые цифры, и после недолгих проверок мне уже было ясно: моё распределение выражается через числа Стирлинга настолько просто и лаконично, что это стало настоящей наградой! Решение нашлось и, более того, оказалось удивительно простым и красивым! Но, конечно, и этого было мало. Совпадения чисел недостаточно для утверждения о том, что решение найдено. Однако, зная, что искать, я смог строго свести рекуррентное соотношение для моего распределения к соотношению, определяющему числа Стирлинга, после чего задачу можно было счесть решённой.

Мне очевидно, что это достаточно скромный результат, а специалисту по комбинаторике он, скорее всего, покажется простым упражнением. Но я могу им гордиться. После долгих упорных усилий и из моей волшебной палочки вылетели наконец искры и пёрышко взлетело на пару сантиметров над столом! Это значит, что я действительно делал все верно и когда искал решение, и, главное, когда не допускал возможности публиковать простую эмпирику, претендуя на объяснение пусть даже шуточного эффекта. Я пишу эти строки не для того, чтобы похвастаться, а чтобы вдохновить тех, кто чувствует в себе настоящую любовь к математике, на долгий, кропотливый, но счастливый труд.

Метод пристального всматривания в расчёте на интуицию работает только тогда, когда к волшебной палочке прилагается аналитический аппарат, который позволит строго проверить результат «озарения». В известной книге «Физики шутят» приводился анекдот о том, как строятся рассуждения представителей различных специальностей.

— Взгляни на этого математика, — сказал логик. — Он замечает, что первые девяносто девять чисел меньше сотни, и отсюда с помощью того, что он называет индукцией, заключает, что любые числа меньше сотни.

— Физик верит, — сказал математик, — что 60 делится на все числа. Он замечает, что 60 делится на 1, 2, 3, 4, 5 и 6. Он проверяет несколько других чисел, например 10, 20 и 30, взятых, как он говорит, наугад. Поскольку 60 делится на них, он считает экспериментальные данные достаточными.

— Да, но взгляни на инженера, — возразил физик. — Он подозревает, что все нечётные числа простые. Во всяком случае, 1 можно рассматривать как простое число, доказывает он. Затем идут 3, 5 и 7, все, несомненно, простые. Затем идёт 9 — досадный случай; по-видимому, 9 не является простым числом. Но 11 и 13, конечно, простые. Возвратимся к 9, — говорит он, — я заключаю, что 9 должно быть ошибкой эксперимента.

Это забавно, конечно, но вот вам такой числовой ряд: 1, 2, 4, 8, 16, …Продолжите его. «Это же, очевидно, степени двойки! — воскликнете вы. — Следующим числом будет 32, а за ним 64 и т. д.». Но что, если я скажу вам, что следующим должно быть 31? И это не степени двойки, а значения вот такого выражения:

Я не взаправдашний математик, а физик, вулканолог и немного енот, использующий математику как инструмент. Но я этот свой инструмент очень люблю. Он красивый, изящный и мощный.

При n = 0, 1, 2, 3, … здесь под знаком суммы стоит биномиальный коэффициент. Первые тринадцать членов этого ряда выглядят так:

1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386, 562, 794, …

Приведённое мною выражение даёт число областей, на которые разбивается круг, если расположить на его окружности n различных точек и соединить их каждую с каждой.

Я не взаправдашний математик, а физик, вулканолог и немного енот, использующий математику как инструмент. Но я этот свой инструмент очень люблю. Он красивый, изящный и мощный.-2

«Магическое число» 4 возникает в сумме биномиальных коэффициентов из того обстоятель­ства, что любым четырём из этих n точек на окружности соответствует одна точка внутри круга, в которой должны пересечься соединяющие их отрезки. Далее вывод строится на знаменитой формуле Эйлера, связывающей число узлов и ребер некоторого планарного графа с числом областей, на которые он разбивает конечную область (например, сферу). И эта простая и абсолютно понятная задача имеет столь коварную «подсказку»! Ведь на проверку даже первых пяти чисел уже должно уйти достаточно много времени, чтобы заключить, что число областей выражается степенью двойки. Ну а если упорство возобладает, то подсчёт областей при n = 6 неизбежно вызовет недоумение и поиск ошибки в подсчёте, ведь 31 так близко к 32 (попробуйте сами нарисовать и сосчитать эти области).

Забавно то, что десятый член ряда опять равен степени двойки. Понять, откуда эти степени взялись и почему ряд начинается столь многообещающе, поможет хорошо известный арифметический треугольник, или треугольник Паскаля. Его элементы — биномиальные коэффициенты, а сумма всех чисел каждого ряда в точности равна степени двойки (это обстоятельство используется для нормировки функции вероятности биномиального распределения).

Я не взаправдашний математик, а физик, вулканолог и немного енот, использующий математику как инструмент. Но я этот свой инструмент очень люблю. Он красивый, изящный и мощный.-3

Поскольку число областей, на которые разбивается круг, выражается суммой пяти первых биномиальных коэффициентов (на рисунке они выделены синим цветом), первые пять таких сумм содержат в себе полные ряды в треугольнике, однако начиная с шестого ряда суммирование идёт не по всем коэффициентам и последняя единичка в сумму не попадает. Отсюда и взялось «коварное» число 31. В десятом же ряду первые пять коэффициентов составляют ровно половину ряда, общая сумма которого равна степени двойки (2⁹), и, значит, половина тоже будет степенью двойки. Если где-то ещё они и встретятся, то это уже будет случайным совпадением.

Ричард Ги из Университета Калгари в 1988 году опубликовал статью, озаглавленную «Сильный закон малых чисел», в которой приводит и этот пример (с полным доказательством), и теорему, достойную иных законов подлости:

Просто посмотреть недостаточно.

В ней есть ещё более трёх десятков примеров последовательностей и «фактов», которые выглядят многообещающими, но никак не могут быть законами.

Мне очень понравился такой пример: при использовании знаменитого метода Евклида для доказательства бесконечности ряда простых чисел последние получаются не всегда. Здесь речь о том, что, предположив конечность ряда простых чисел, мы можем вычислить произведение всех членов этого ряда, увеличить его на единицу и получить число, превышающее все имеющиеся, но не делящееся ни на одно из них. Можно подумать, что произведение нескольких первых простых чисел, увеличенное на единицу, всегда порождает простое число, и убедиться в этом на нескольких примерах.

2 +1 = 3

(2 × 3) + 1 = 7

(2 × 3 × 5) + 1 = 31

(2 × 3 × 5 × 7 ) + 1 = 211

(2 × 3 × 5 × 7 ×11) + 1 = 2311

(2 × 3 × 5 × 7 ×11×13) + 1 = 30031 = 59 × 509.

Последний, да и последующие примеры дают осечку! Получается, доказательство Евклида неверно? Нет, оно совершенно справедливо, поскольку ничего не говорит о простоте результата, но утверждает существование числа, не делящегося ни на одно из полного (по нашему предположению) множества простых чисел. Число 30 031 и вправду не делится ни на одно из перемножаемых чисел.

Позже, в 1990 году, тот же Ричард Ги выпустил в свет ещё одну статью «Второй сильный закон малых чисел», в которой приводит с полсотни примеров последовательностей, ломающих интуицию математика!

Воспетая мной математическая интуиция без строгого доказательства может сыграть злую шутку. Более того, и в строгое, но очень сложное доказательство может вкрасться незаметная коварная ошибка, чему есть множество примеров. Обязательно прочтите чудесную книгу «Великая теорема Ферма» Саймона Сингха, чтобы почувствовать, с какими поистине циклопическими законами подлости приходится иметь дело в большой математике. Но удивительное дело: именно эти примеры и рассказы вдохновляют меня на добросовестный поиск математической истины там, где вполне хватило бы наблюдения или приблизительного результата.

Енот в поисках истины
Енот в поисках истины