Вкратце, остальное читать нет смысла
• Теория струн - это математическая модель, описывающая взаимодействие элементарных частиц и их взаимодействие с пространством-временем.
• Теория струн предлагает новую парадигму для описания фундаментальных взаимодействий и структуры Вселенной.
• Теория струн требует существования закрытых струн, хотя открытые струны могут или не могут существовать.
• Различные версии теории струн включают в себя закрытые и открытые струны, а также различные симметрии и группы.
• Введение идеи компактификации позволяет решить проблемы дополнительных измерений в теории струн.
• Теория струн на мировом листе представляет собой подход, основанный на характере движения и взаимодействия струн для описания пространства-времени.
• В теории струн пространство-время является набором ярлыков, позволяющих описать движение струны, и квантовая механика и теория струн на мировом листе включают в себя гравитацию.
1
Мы начнем с перечня ситуаций, в которых струны возникают "сами по себе независимо от нашего желания и воли. Уже само существование подобных ситуаций делает необходимым построение и изучение теории струн, поэтому естественно предпослать их описание как более спекулятивным сценариям с участием струн в роли фундаментальных объектов, так и изложению формализма теории.
Струна в самом наивном смысле слова — это одномерный протяженный объект с натяжением, т.е. энергия его растет с длиной Струна из музыкальных инструментов (нерелятивистская струна), давшая свое имя всему предмету, имеет закон "дисперсии"
= const + kL2
который для малых колебаний превращается в линейный, переписанный в терминах амплитуды A малых поперечных колебаний, снова становится квадратичным. Конечно, в теории музыкальных струн нас вряд ли ждет много неожиданностей, но не упомянуть их для полноты картины было бы нельзя. Другой важный пример нерелятивистских струн — полимеры, в том числе белковые молекулы.
Несколько более интересно появление струн в роли устойчивых квазичастиц, а также при изучении нетривиальных фазовых состояний и, в частности, при нарушениях симметрии. Возникновение струн в такой ситуации не только не редкость, а скорее закономерность: среди самых известных примеров вихри (смерчи) в ламинарных потоках, линии дислокации в кристаллических решетках, абрикосовские нити в сверхпроводниках, дираковские нити, связанные
монополями в калибровочных теориях, "космические струны «в разнообразных моделях со специфическим хиггсовским сектором и т.п. Причиной распространенности струноподобных образований в теориях, имеющих отношение к нашему миру, является трехмерность пространства. Чтобы ответить на вопрос, как устроены простейшие топологически устойчивые квази-частицы, надо знать, что следует выбросить из R3, чтобы сделать его неодносвязным. Ответ очевиден: одномерные линии. Это означает, что покрайней мере в тех ситуациях, где имеется характеристика ("параметр порядка"), принимающая значения в окружности, можно гаранти-ровать существование стабильных струноподобных квазичастиц.
Более того, в подобных ситуациях очевидно, что энергия квазичастицы прямо пропорцио-нальна ее длине: это следует из равноправности всех фрагментов линии — постоянства плот-ности энергии. Такой закон дисперсии характерен для "релятивистских"струн, и мы видим, что релятивистские струны естественно возникают в совершенно нерелятивистских системах.
Вернемся теперь на шаг и заметим, что помимо решения "уравненияR3 –? = неодносвяз-но"представляет интерес и ответ на вопрос "R3 – ? = несвязно". Этот вопрос связан, например,
разделом различных фаз. Ответом на него, естественно, является "? = двумерная поверх-ность"— в трех мерном мире фазы разделены поверхностями. В двумерном мире R2 фазы разделялись бы линиями. Изучение этих линий полезно хотя бы потому, что в системах с фазо-выми переходами второго рода плотности энергий различных фаз совпадают, и вся свободная энергия системы оказывается связанной с линиями фазового раздела. Более того, в системе
близкодействием энергия просто концентрируется вблизи линии раздела и фактически про-
2
порциональна ее длине, т.е. мы возвращается к знакомому соотношению числение статсуммы теории после этого сводится к суммированию по произольному (случайному) расположению линий раздела фаз с весами зависимости от конкретной модели следует разрешить или запре-тить самопересечения линий). Классический пример такой задачи — модель Изинга — одна из самых популярных моделей, рассматриваемых по разным поводам в теории струн. Возвращаясь
mpехмерному миру R3, мы получим поверхности раздела, свободные энергии, пропорцио-нальные площади, и суммы по случайным поверхностям с весами.
принципе иерархия может быть продолжена: имеет смысл стремиться к созданию теории мембран ((2 + 1)мерных объектов) и общей теории p-бран ((p + 1)-мерных систем).
Перечислим еще несколько разделов теоретической физики, ждущих своей (наверняка су-ществующей) переформулировки в терминах теорииструн. Прежде всего это теория полимеров и биологических мембран. В принципе, теория струн, в которой принято населять нити и по-верхности всякими дополнительными объектами и изучать, что из этого получается, как будто специально создана для подобных приложений, однако серьезных попыток в этом направлении пока не предпринималось. Другой круг вопросов — теория хаоса. Популярны усилия построить такую теорию на языке учения о фракталах, которое, в свою очередь, очень близко к квантовой гравитации, а значит, и к теории струн. Выяснение этих связей пойдет во многом параллельно исследованию параллелей между хаосом и квантовой теорией, что, собственно, составляет одну из главных задач исследователей хаоса. В определенной связи с предыдущими находятся уже упоминавшиеся проблемы многофазных систем типа спиновых стекол и нейронных сетей. Хотя конкретная их связь с теорией струн пока неясна, отдельные параллели впечатляют.
Вообще, в перспективе теория струн может оказаться полезной для перевода самых раз-нообразных задач дискретной математики на язык непрерывной (аналитический) и наоборот. Первым успехом на этом пути была, конечно, сама квантовая механика, допускающая две эк-вивалентные формулировки — матричную (дискретную) и функциональную (непрерывную), лучшим выражением которой стал интеграл по путям Винерa—Диракa—Фейнмана. С этой точ-ки зрения достижение теории струн состоит в предложении рассмотреть более богатый класс интегралов по путям — интегралы по случайным поверхностям (а не только линиям) — и тем самым резко расширить спектр задач, допускающих формулировку в таких терминах. Посколь-ку важность (и сложность) создания эффективной дискретной математики для дальнейшего прогресса естествознания (особенно в сферах биологии и искусственного интеллекта) вряд ли вызывает сомнения, одна эта перспек тива способна поддержать интерес к теории струн.
Как описываются частицы теорией струн
Вспомним вкратце, что мы говорили о колебаниях фортепианной струны. Если туго натянуть струну между двумя колками и ударить по ней молоточком, она завибрирует с определённой частотой. Частота — это число колебаний в секунду. Помимо основной частоты, фортепианная струна вибрирует также на обертонах — колебаниях более высоких частот, придающих звуку рояля характерную окраску. Я приводил эту аналогию при описании поведения электрона в атоме водорода: он тоже имеет основную колебательную моду, соответствующую основному
3
состоянию с минимальной энергией, и дополнительные моды, соответствующие более высоким энергетическим уровням.
Самый нижний энергетический уровень натянутой струны соответствует отсутствию коле-баний. Ну... почти отсутствию, ведь небольшие квантовые колебания присутствуют всегда, и этот факт имеет важное значение. Правильнее всего представлять себе нижний энергетический уровень как обладающий небольшой колебательной энергией в рамках дозволенного квантовой механикой. Возбуждённые уровни релятивистской струны соответствуют её колебаниям либо на основной частоте, либо на обертонах основной частоты, причём она может вибрировать и на нескольких частотах одновременно, так же как и фортепианная струна. Но, так же как и элек-трон в атоме водорода, релятивистская струна не может вибрировать на произвольной частоте. Электрон может выбирать энергетические уровни из дискретного набора. У релятивистских струн всё точно так же. Разные колебательные уровни обладают разными энергиями, а посколь-ку масса и энергия связаны соотношением E = mc 2 , то разным колебательным состояниям соответствуют и разные массы
Было бы замечательно, если бы я мог сказать, что частота колебаний струны связана с её энергией простым соотношением типа E = hv, как это было в случае фотонов. К сожалению, всё не так просто. Полная масса струны складывается из нескольких составляющих. Первая из них
— это масса покоя струны, которая соответствует энергии натяжения струны между двумя D0-бранами. Вторая — масса, соответствующая колебательной энергии, которая в свою очередь складывается из энергий колебаний всех обертонов. Напомню, что энергия и масса связаны соотношением E = mc 2 . И наконец, третья составляющая — это масса, соответствующая энергии неустранимых квантовых флуктуаций, носящих название нулевых колебаний. Термин «нулевые колебания» заставляет нас помнить о принципиальной неустранимости квантовых флуктуаций. Так вот: вклад энергии нулевых колебаний в массу струны... отрицателен! Согласен, это странно. Очень странно. Чтобы показать, насколько это странно, я приведу такой пример. Если мы ограничимся одной колебательной модой струны, то увидим, что энергия нулевых колебаний этой моды положительна. Каждый из более высоких обертонов в отдельности даёт ещё больший положительный вклад в энергию струны. Но если мы соответствующим образом просуммируем вклады всех обертонов, то получим отрицательное число. Если вы считаете, что это недостаточно плохо, то вот вам ещё более скверная новость: я утаил часть правды, сказав, что вклад энергии нулевых колебаний отрицателен. Все эти эффекты — масса покоя, энергия колебаний и энергия нулевых колебаний — входят в выражение общей массы квадратами своих величин. И если в этой сумме преобладает энергия нулевых колебаний, то квадрат полной массы оказывается отрицательным, а это значит, что сама масса оказывается мнимой, как корень из минус единицы.
Прежде чем вы с возмущением отвергнете подобную чушь, позвольте мне добавить, что в теории струн устранению описанной проблемы посвящено целое направление исследований. В двух словах проблема состоит в том, что квадрат массы релятивистской струны в её низшем энергетическом состоянии отрицателен. Струны в таком состоянии называются тахионами. Да-да, это те же самые тахионы, которые в каждой серии противостоят героям «Звёздного пути». Это, безусловно, плохая новость.
4
Впрочем, я слишком сгустил краски. Существует спасительное решение и для тахионов. Предположим, что основному состоянию тахионной струны соответствует мнимая масса и её квадрат: m2 < 0. Колебательная энергия тоже даёт определённый вклад в квадрат массы. Исполь-зуя правильную колоду и нужным способом сдав карты, можно добиться того, что полная масса струны будет в точности равна нулю. Это обнадёживает, потому что, как мы знаем, в реальном мире существуют безмассовые частицы, например фотоны или гравитоны. Следовательно, если струны действительно описывают реальный мир, то они должны быть безмассовыми или, более строго, по крайней мере некоторые квантовые состояния струн должны быть безмассовыми.
Обратите внимание, что нужно взять правильную колоду карт. Этой метафорой я хотел ска-зать, что нам понадобится 26-мерное пространствовремя. Возможно, вы уже догадались, что к этому безобразию всё и придёт, поэтому я не стану извиняться. Имеется несколько аргументов
пользу 26 измерений, но большинство из них сугубо математические, и я боюсь, что основ-ной массе читателей они не покажутся убедительными. Аргумент, который я приведу, более физический. Мы хотели бы получить безмассовые квантовые состояния струн. Мы знаем, что квантовые нулевые колебания «толкают» m2 в отрицательную сторону. Мы также знаем, что колебательные моды «толкают» m2 в противоположном направлении. Минимальное возможное значение энергии колебаний не зависит от размерности пространства, в то время как величина квантовых нулевых колебаний — зависит. Посмотрим на это вот с какой стороны: когда что-то колеблется — фортепианная струна или что-либо ещё, — оно делает это в каком-то опреде-лённом направлении. Фортепианная струна колеблется в том направлении, в котором по ней ударил молоточек; например, струна рояля колеблется вверх-вниз, но не вправо-влево. Колеба-ние выбирает какое-то одно направление и игнорирует остальные. В противоположность этому квантово-механические нулевые колебания происходят во всех возможных направлениях, и до-бавление каждого нового измерения добавляет квантовой флуктуации ещё одно направление, в котором могут происходить колебания. Больше возможных направлений колебаний, или, как их называют, степеней свободы, означает большее количество флуктуаций, что приводит к больше-му отрицательному вкладу в m2 . Остаётся лишь подсчитать, как правильно подобрать вклады
общую массу колебательных мод и нулевых колебаний. Получается, что одну колебательную моду с минимальным значением энергии компенсирует одно 26-мерное квантовое нулевое коле-бание. Смотрите на это с оптимизмом, ведь количество необходимых измерений могло оказаться нецелым! Что бы мы делали, например, с двадцатью шестью с половиной измерениями?
Если вы ещё не вполне освоились с разными типами колебаний, не переживайте. Они очень похожи. Единственное различие между колебательными модами и квантовыми нулевыми ко-лебаниями состоит в том, что колебательные моды могут присутствовать, а могут и не при-сутствовать, в то время как нулевые колебания присутствуют всегда. Нулевые колебания — это те минимальные движения, наличия которых требует принцип неопределённости. Поми-мо основной моды, в колебаниях струны присутствуют и обертоны, придающие струне новые квантовомеханические свойства. Я предпочитаю представлять себе различные моды в виде про-стых механических моделей, например круговых колебаний, колебаний в форме листа клевера или крутильных колебаний. Каждая форма соответствует отдельной частице. Другими слова-ми, одна и та же струна может выступать в роли различных частиц в зависимости от формы
5
происходящих на ней колебаний. Но говорить о форме колебаний всё же не совсем корректно, потому что эти колебания не механические, а квантовомеханические. Правильнее говорить, что каждой частице соответствует своя квантовая мода. Геометрическая форма — это лишь удобный способ визуализации квантово-механических свойств.
Итак, мы имеем: хорошую новость, плохую новость и очень плохую новость. Струны, обладая разными колебательными модами, способны вести себя как фотоны или как гравитоны. Это хорошая новость. Они могут делать это только в 26-мерном пространстве. Это плохая новость. Кроме того, существуют колебательные моды, приводящие к мнимым массам и превращающие струны в тахионы, которые привносят в теорию нестабильность. Ужаснее этой новости быть не может.
Переход к суперструнам позволяет излечить теорию от тахионов, а заодно снизить коли-чество необходимых измерений с 26 до 10. К тому же суперструны допускают новый тип колебательных мод, заставляющий их вести себя как электроны. Это уже по-настоящему круто.
много чего хотел бы рассказать о суперструнах, но этот рассказ ожидает своей очереди в следующих главах. Сейчас же я предпочту остановиться на вопросе лечения теории от тахионов. Суперструны флуктуируют не просто в пространстве-времени, а значительно более сложным
абстрактным образом. Эти особые виды флуктуаций позволяют решить проблему тахионов, но не так, как вы, возможно, подумали. Тахионы по-прежнему остаются в теории как одно из решений для колебательных мод, обладающих мнимой массой, но фишка в том, что если вы будете рассматривать моды, отвечающие за поведение суперструны как фотона, гравитона, электрона или какой-то другой реальной частицы, то, как бы вы ни сталкивали эти частицы, каким бы образом они между собой ни взаимодействовали, они никогда не порождают тахионы. Тахионы как бы возможны, но они никогда не возникают. И это означает, что теория попрежнему балансирует на лезвии ножа, но существует особый тип симметрии, помогающий сохранять это хрупкое равновесие. Такой тип симметрии называется суперсимметрией. Физики надеются найти экспериментальные доказательства существования суперсимметрии в ближайшие годы. Если они их найдут, многие из нас поверят в суперструны. Но об этом — в седьмой главе.
1.1 ##?
Таким образом, согласно теории струн наблюдаемые характеристики всех элементарных ча-стиц определяются конкретной модой резонансного колебания внутренних струн. Этот взгляд радикально отличается от точки зрения, которой придерживались физики до открытия теории струн, когда считалось, что различия между фундаментальными частицами обусловлены тем, что они «отрезаны от разных кусков ткани». Хотя частицы считались элементарными, предпола-галось, что они состоят из различного «материала». Так, например, «материал» электрона имел отрицательный электрический заряд, а «материал» нейтрино был электрически нейтральными. Теория струн радикально изменила эту картину, объявив, что «материал» всего вещества и всех взаимодействий является одним и тем же. Каждая элементарная частица состоит из отдельной струны, – точнее, каждая частица представляет собой отдельную струну – и все струны явля-ются абсолютно идентичными. Различия между частицами обусловлены различными модами
6
резонансных колебаний этих струн. То, что представлялось различными частицами, на самом деле является различными «нотами», исполняемыми на фундаментальной струне. Вселенная, состоящая из бесчисленного количества этих колеблющихся струн, подобна космической сим-фонии.
Виды теории струн
String theory demands that closed strings must exist, though open strings may or may not exist. Some versions of string theory are perfectly mathematically consistent but contain only closed strings. No theory contains only open strings because if you have open strings, you can construct a situation where the ends of the strings meet each other and, voila,` a closed string exists. (Cutting closed strings to get open strings isn’t always allowed.)
2.1 Type I string theory
Type I string theory involves both open and closed strings. It contains a form of symmetry that’s mathematically designated as a symmetry group called O(32). This happens to be the group of rotations and reflections in 32 dimensions. (We’ll try to make that the most mathematics you need to know related to symmetry groups.)
2.2 Type IIA string theory
Type IIA string theory involves closed strings where the vibrational patterns are symmetrical, regardless of whether they travel left or right along the closed string. Type IIA open strings are attached to structures called D-branes (which we discuss in greater detail in Chapter 11) with an odd number of dimensions.
2.3 Type IIB string theory
Type IIB string theory involves closed strings where the vibrational patterns are asymmetrical, depending on whether they travel left or right along the closed string. Type IIB open strings are attached to D-branes (discovered in 1995 and covered in Chapter 11) with an even number of dimensions.
2.4 Two strings in one: Heterotic strings
A new form of string theory, called heterotic string theory, was discovered in 1985 by the Princeton team of David Gross, Jeff Harvey, Emil Martinec, and Ryan Rohm. This version of string theory sometimes combines some features of bosonic string theory with some of superstring theory.
A distinction of the heterotic string is that the string vibrations in different directions resulted in different behaviors. “Left-moving” vibrations resembled the old bosonic string, while “right-moving” vibrations resembled the Type II strings. The heterotic string seemed to contain exactly the properties that Green and Schwarz needed to cancel out anomalies within the theory.
7
It was ultimately shown that only two mathematical symmetry groups could be applied to heterotic string theory, which resulted in stable theories in ten dimensions: O(32) symmetry and E8 × E8 symmetry. These two groups gave rise to the names Type HO and Type HE string theory.
2.4.1 Type HO string theory
Type HO is a form of heterotic string theory. The name comes from the longer name Heterotic O(32) string theory, which describes the symmetry group of the theory. It contains only closed strings whose right-moving vibrations resemble the Type II strings and whose left-moving vibrations resemble the bosonic strings. The similar theory, Type HE, has subtle but important mathematical differences regarding the symmetry group.
2.4.2 Type HE string theory
Type HE is another form of heterotic string theory, based on a different symmetry group from the Type HO theory. The name comes from the longer name Heterotic E8 × E8 string theory, which describes the symmetry group of the theory. It also contains only closed strings whose right-moving vibrations resemble the Type II strings and whose left-moving vibrations resemble the bosonic strings.
How to Fold Space: Introducing Calabi-Yau Manifolds
The problems of extra dimensions continued to plague string theory, but these were solved by introducing the idea of compactification, in which the extra dimensions curl up around each other, growing so tiny that they’re extremely hard to detect. The mathematics that explain how this might be achieved had already been developed in the form of complex Calabi-Yau manifolds, an example of which is shown in Figure 10-3. The challenge is that string theory offers no real way to determine exactly which of the many Calabi-Yau manifolds (or a similar type of folded structure) is right!
One suggestion was the solution that had been proposed by Theodor Kaluza and Oskar Klein a half century earlier: The dimensions could be curled up into a very small size.
In 1985, the Calabi-Yau manifolds (created for other purposes years earlier by mathematicians Eugenio Calabi and Shing-Tung Yau) were used by Edward Witten, Philip Candelas, Gary Horowitz, and Andrew Strominger to compactify the extra six space dimensions in just the right way. These manifolds preserved supersymmetry just enough to replicate certain aspects of the Standard Model.
Unfortunately, there are tens of thousands of possible Calabi-Yau manifolds for six dimensions, and string theory offers no reasonable means of determining which is the right one. For that matter, even if physicists could determine which one is the right one, they’d still want to answer the question of why the universe folded up the extra six dimensions in that particular configuration.
Пространство-время из струн
Многое в теории струн происходит похожим образом. На основании характера движения и взаимодействия струн делаются предположения о свойствах пространства-времени. Такой
8
подход называется теорией струн на мировом листе. Мировой лист — это способ представ-ления движения струн. GPS-трек движения автомобиля представляет собой мировую линию в пространстве-времени. Со струнами всё оказывается сложнее по двум причинам. Во-первых, струны — не точки. Они имеют протяжённость, поэтому, чтобы задать положение струны, вы должны задать положение всех её точек. Во-вторых, струны существуют в 26-мерном или, в лучшем случае, в 10-мерном пространстве, и эти пространственные координаты могут быть искривлены или свёрнуты довольно сложным образом. В отличие от зрителя автогонки, физик не может встать в сторонке и взглянуть оттуда на геометрию пространства-времени. Осмыслен-ные вопросы имеют отношение только к характеру движения и взаимодействия струн. Само же пространство-время в теории струн на мировом листе имеет смысл лишь в аспекте поведения струн, но не само по себе
Мировой лист струны является поверхностью. Если мы проведём по этой поверхности разрез, то получим кривую, которая и представляет собой струну. Разрезая лист разными спо-собами, мы получим набор кривых; этот набор является аналогом набора точек, из которых состоит GPS-трек автомобиля. Каждая точка GPS-трека представляет положение автомобиля
определённый момент времени; аналогично каждая кривая, вырезанная из мирового листа, представляет струну в определённый момент времени.
Хорошей аналогией является представление мирового листа струны как топографической карты, горизонтали которой описывают различные положения струны в пространстве-времени. Но можно встать на другую точку зрения и сказать, что мировой лист струны — это всё, что у нас есть, а пространство-время — не более чем набор ярлычков
Подведём промежуточные итоги, а затем перейдём к одной из главных изюминок теории струн на мировом листе. Обычно мы представляем струны вибрирующими в пространстве-времени. Но пространство и время не обязаны быть абсолютными понятиями. Даже лучше, если это не так, потому что тогда некий внешний динамический принцип мог бы управлять формой пространства-времени. Именно так и случилось в теории струн. В теории струн на мировом листе пространство-время является просто набором ярлыков, позволяющих описать движение струны. Квантовая механика требует, чтобы эти ярлыки немного колебались. А теперь: ба-рабанная дробь! В конечном итоге выходит так, что вы можете отслеживать эти квантовые флуктуации, только если пространство-время подчиняется уравнениям общей теории относи-тельности. Общая теория относительности — напомню — это современная теория гравитации. Итак, квантовая механика плюс теория струн на мировом листе включают в себя гравитацию. Круто!
Объяснения «отслеживания» квантовых флуктуаций пространственновременных ярлыков на мировом листе уведут нас глубоко в технические дебри, но я могу попытаться объяснить это «на пальцах», используя аналогию с гоночной трассой. Помните, я предположил, что мы могли бы догадаться, что автодром состоит из поворотов и прямых участков, заметив, что ав-томобили тормозят в одних местах трассы и разгоняются в других? Автодром также не имеет острых углов, потому что, чтобы повернуть в таком месте, автомобиль должен почти остано-виться, что противоречило бы духу автогонок. В общей теории относительности тоже почти нет острых углов в пространстве-времени, потому что уравнения ОТО их запрещают. Я говорю
9
«почти», потому что на самом деле острые углы, или, как их называют теоретики, сингулярно-сти, разрешены, но только за горизонтом чёрных дыр. Интуитивно можно понять отсутствие острых углов в пространстве-времени по аналогии с отсутствием их на автодроме. Струны не могут проходить через сингулярности, так же как гоночные автомобили не могут прохо-дить острые углы трассы без остановки, хотя есть и исключения. Исследование разрешённых типов сингулярности представляет собой отдельный и крайне увлекательный раздел теории струн. Обычно эти сингулярности не могут быть поняты в рамках общей теории относительно-сти, так что теория струн разрешает существование гораздо более богатых классов геометрии пространства-времени, чем теория относительности. Дополнительные геометрии возникают в теории струн в некоторых случаях, связанных с бранами, о которых пойдёт речь в следующей главе.
Браны
Струны имеют две важных особенности. Во-первых, несмотря на конечность простран-ственных размеров, они могут быть непротиворечиво описаны в рамках квантовой механики. Во-вторых, среди резонансных мод колебаний имеется мода, свойства которой в точности совпа-дают со свойствами гравитона: тем самым гарантируется, что гравитационное взаимодействие представляет собой неотъемлемую часть этой теории. Однако, как мы помним, теория струн показала, что принятое понятие нульмерной точечной частицы оказалось не более чем мате-матической идеализацией, не имеющей отношения к действительности. Не может ли быть так, что бесконечно тонкая одномерная струна представляет собой такую же математическую иде-ализацию? Может быть, одномерная струна на самом деле имеет какую-то толщину, подобно внутренней поверхности двумерной велосипедной шины или, если быть более реалистичными, подобно тонкой трехмерной баранке? Но трудности, с которыми столкнулись Гейзенберг, Дирак
другие в попытках построить квантовую теорию трехмерных фундаментальных комочков, вы-глядели непреодолимыми и вновь и вновь ставили в тупик исследователей, старавшихся пойти столь естественным путем.
Однако в середине 1990-х гг. специалисты по теории струн, используя косвенные и довольно сложные рассуждения, несколько неожиданно установили, что подобные фундаментальные объ-екты действительно играют важную и нетривиальную роль в самой теории струн. Исследователи постепенно осознали, что теория струн содержит не только струны. Важнейшее наблюдение, иг-рающее центральную роль во второй революции в теории суперструн, начатой Виттеном и его коллегами в 1995 г., состоит в том, что теория суперструн в действительности включает в се-бя компоненты различной размерности: элементы, похожие на двумерные фрисби-диски, на трехмерные капли, и даже еще более экзотические конструкции.
концу 1980-х гг. теория струн, по мнению физиков, хотя и приблизилась к построению единой картины Вселенной, но не выдержала экзамен на «отлично». На то были две причи-ны. Во-первых, как вскользь отмечено в главе 7, физики обнаружили, что существует пять различных вариантов теории струн. Напомним, что их называют теориями типа I, типа IIА, типа IIВ, а также теориями гетеротических струн на основе групп О(32) (О-гетеротические
10
струны) и Е8хЕ8 (Е-гетеротические струны). Многие основные свойства этих теорий совпа-дают: колебательные моды определяют возможные массы и заряды, общее число требуемых пространственных измерений равно 10, их свернутые измерения должны быть многообразиями Калаби-Яу и т.д
Теоретики, занимавшиеся струнами, чувствовали себя неуютно: хоть и впечатляет иметь на руках серьезную кандидатуру на окончательную единую теорию, но если таких кандидатур пять, непонятно, как распределить время на исследование каждой из них.
Вторая причина отклонения от неизбежности более тонкая. Когда физики начинали ис-следовать уравнения любой из пяти теорий, выяснялось, что у этих уравнений действительно много решений, например много возможных способов свертывания дополнительных измерений,
каждое решение соответствует вселенной со своими свойствами. И хотя все эти вселенные возникали в качестве полноправных решений уравнений теории струн, большинство из них, казалось, не имеет никакого отношения к наблюдаемому нами миру.
Хотя предстоит проделать еще много работы, две основные характеристики М-теории уже установлены физиками. Во-первых, М-теория рассматривает одиннадцать измерений (десять пространственных и одно временное). Подобно тому, как Калуца внезапно обнаружил, что одно дополнительное пространственное измерение можно использовать для объединения гравита-ции с электромагнетизмом, теоретики осознали, что одно дополнительное пространственное измерение в теории струн (помимо оставшихся девяти пространственных и одного временного, обсуждавшихся в предыдущих главах) позволяет осуществить более чем удовлетворительный синтез всех пяти вариантов теории струн. Кроме того, это дополнительное измерение возникает не из воздуха: теоретики обнаружили, что выводы о существовании одного временного и девя-ти пространственных измерений, сделанные в 1970-х и 1980-х гг., являются приближенными, а точные вычисления показывают, что одно пространственное измерение в те годы осталось незамеченным.
Второе установленное свойство М-теории состоит в том, что она, кроме колеблющихся струн, включает и другие объекты: колеблющиеся двумерные мембраны и трехмерные капли (последние называют 3-бранами), а также и многие другие составляющие.
Когда подошло время заявленного выступления Эдварда Виттена, он поднялся на кафед-ру и сделал доклад, который вызвал вторую революцию в теории суперструн. Вдохновленный результатами более ранних работ Даффа, Халла и Таунсенда, а также замечательными идеями Шварца, Ашока Сена и других теоретиков, Виттен объявил о новой стратегии выхода за рамки теории возмущений в теории струн. Главным элементом этой стратегии было понятие дуально-сти. Физики используют это понятие для описания теоретических моделей, которые кажутся различными, но приводят к идентичным физическим следствиям. Есть «тривиальные» примеры дуальности, в которых совершенно одинаковые теории могут казаться различными лишь вслед-ствие того, как эти теории представлены. Человек, понимающий только английский язык, не поймет, что речь идет о теории относительности, если объяснять ему эту теорию на китайском языке. Однако физик, свободно владеющий обоими языками, легко переведет ее на свой язык и установит эквивалентность двух теорий. Мы называем этот пример «тривиальным», поскольку с точки зрения физики при переводе не обнаруживается ничего нового. Для владеющих разны-
11
ми языками теоретиков получить новый результат в теории относительности одинаково сложно вне зависимости от того, на каком языке эта теория сформулирована. Переход от английского
китайскому и обратно не приводит к появлению новых физических результатов. Нетривиальными являются те примеры дуальности, в которых различные описания одной и
той же ситуации приводят к различным взаимодополняющим физическим выводам и матема-тическим методам исследования. На самом деле, выше мы уже дважды сталкивались с такими примерами. В главе 10 обсуждалось, что теория струн во вселенной с циклическим измерением радиусом R может быть с тем же успехом описана в рамках теории во вселенной с цикличе-ским измерением радиусом 1/R. Геометрически два варианта различны, но физические явления оказываются совершенно идентичными. Второй пример – зеркальная симметрия. Имеются два различных многообразия Калаби-Яу в дополнительных шести пространственных измерениях, но две вселенные, кажущиеся на первый взгляд совершенно разными, имеют одни и те же фи-зические свойства. Существенным отличием от перевода с одного языка на другой является то, что эти дуальные описания могут привести к новым физическим результатам, например, к предсказаниям минимального размера циклического измерения или переходов с изменением топологии в теории струн.
своей лекции на конференции «Струны-95» Виттен привел пример нового и фундамен-тального типа дуальности. Как кратко отмечено в начале этой главы, он предположил, что пять теорий струн, имеющих совершенно разную структуру, на самом деле являются лишь разными способами описания одного и того же физического мира. Работая с пятью теориями струн, мы просто смотрели в пять разных окон, обращенных в сторону одного теоретического фундамен-та. До событий середины 1990-х гг. возможность существования дуальности такого масштаба была одной из лелеемых физиками идей, о которой можно было упоминать лишь шепотом
– настолько она представлялась фантастической. Если две теории существенно расходятся в деталях формулировки, трудно вообразить, что эти теории могут быть просто двумя разными описаниями одной и той же физической реальности, лежащей в основе. Тем не менее, с развити-ем теории струн появляются все более убедительные свидетельства в пользу того, что все пять теорий струн являются дуальными. Кроме того, как будет пояснено ниже, из доводов Виттена следует, что в физике есть место и для шестой теории.
Эти результаты тесно переплетены с вопросами о применимости методов теории возмуще-ний, обсуждавшихся в конце предыдущего пункта. Причина в том, что пять теорий струн сильно отличаются друг от друга, если в каждой из них предполагается наличие слабой связи, т. е. если константа связи меньше 1. Долгое время физики опирались на теорию возмущений, в рамках которой невозможна постановка вопроса о том, какими будут свойства любой из теорий, если окажется, что константа связи в этой теории больше 1, т. е. связь будет сильной. По утвер-ждениям Виттена и других исследователей, сейчас можно ответить на этот важнейший вопрос. Их результаты убедительно свидетельствуют о том, что для сильной связи в каждой из теорий (включая шестую теорию, которую мы опишем ниже) есть дуальное описание в терминах слабой связи в другой теории, и наоборот.
Чтобы яснее понять смысл последнего утверждения, можно взять на вооружение следующую аналогию. Представим себе двух, мягко говоря, слегка чудаковатых индивидуумов. Один из них
12
обожает лед, но, как ни странно, никогда не видел воды. Второй обожает воду, но, что не менее странно, никогда не видел льда. Однажды они встречаются и решают отправиться в поход по пустыне. В начале похода каждый из них изумлен снаряжением другого. Любитель льда пленен гладкой поверхностью прозрачной жидкости, которую принес с собой любитель воды, а любителя воды странным образом притягивают твердые кубики, принесенные любителем льда. Ни один из них и не подозревает о близком родстве между льдом и водой; для них эти субстанции совершенно различны. Но, продвигаясь по палящей жаре пустыни, они поражены тем, что лед начинает медленно превращаться в воду. А позже, дрожа от дикого холода пустынной ночи, они столь же сильно поражены тем, что жидкая вода начинает медленно превращаться в твердый лед.
тут до них доходит, что вода и лед, которые они считали совершенно разными веществами, тесно связаны между собой.
Дуальность в пяти теориях струн в чем-то похожа на этот пример: грубо говоря, константы связи струны играют роль, аналогичную температуре в пустыне. Подобно воде и льду, любые две из пяти теорий с первого взгляда кажутся совершенно различными. Но при изменении соответствующих констант связи эти теории превращаются одна в другую. Так же, как лед превращается в воду при увеличении температуры, одна из теорий переходит в другую при увеличении константы связи. Эта аналогия, в конце концов, может привести нас к выводу о том, что все теории струн являются дуальными описаниями единой структуры – аналога Н2О для воды и льда.
Итак, посмотрим, где мы находимся. К середине 1980-х гг. физики построили пять теорий суперструн. При исследовании приближенными методами теории возмущений свойства пяти теорий казались различными. Однако эти приближенные методы применимы лишь тогда, когда константа связи струны меньше 1. Ожидалось, что константу связи в каждой теории можно будет вычислить точно, но из вида приближенных уравнений для констант стало ясно, что такое вы-числение в настоящее время невозможно. Поэтому физики направили свои усилия на изучение всех пяти теорий в допустимых диапазонах соответствующих констант связи, как для констант, меньших 1, так и больших 1, т.е. при слабой и при сильной связи. Однако попытки определить свойства любой из этих теорий в области сильной связи на основе традиционных методов теории возмущений оказались тщетными. В настоящее время физики научились рассчитывать опре-деленные характеристики каждой теории струн в области сильной связи, используя мощный формализм суперсимметрии. Ко всеобщему изумлению всех теоретиков, свойства теории О-гетеротических струн в области сильной связи оказались идентичными свойствам теории струн типа 1 в области слабой связи, и наоборот. Более того, свойства теории струн типа IIВ в области сильной связи оказались идентичными свойствам той же теории в области слабой связи. Эти неожиданные открытия побуждают нас, следуя Виттену, перейти к анализу двух оставшихся теорий струн, струн типа IIА и Е-гетеротической струны, и выяснить, как эти теории вписыва-ются в общую картину. И здесь нас ожидают еще более удивительные неожиданности. Для того чтобы подготовиться к ним, необходимо совершить краткий исторический экскурс.
Это утверждение не обесценивает ни одного из выводов предыдущих глав, но побуждает рассмотреть их в рамках нового формализма. Возникает, например, вопрос, как можно со-стыковать новые результаты с тем, что в теории струн требуется одно временное и девять
13
пространственных измерений? Что же, как обсуждалось в главе 8, это ограничение возника-ет при расчете числа различных направлений, в которых может колебаться струна, и число измерений выбирается так, чтобы квантово-механические вероятности гарантированно имели осмысленные значения. Новое измерение не является измерением, в котором может колебать-ся Е-гетеротическая струна, так как оно зафиксировано в самой структуре «струны». Кроме того, в формализме теории возмущений, который использовался физиками для вывода ограни-чения на число пространственно-временных измерений, предполагалась, что константа связи Е-гетеротической струны мала. И хотя это было осознано гораздо позднее, в таком предполо-жении неявно используются два взаимосогласованных приближения: малая ширина мембраны на рис. 12.7, при которой она выглядит, как струна, и малый размер одиннадцатого измерения, не влияющий на вид уравнений теории возмущений. В рамках этой приближенной схемы мы вынуждены представлять себе Вселенную десятимерной и заполненной одномерными струнами. Теперь мы видим, что она 11-мерная и заполнена двумерными мембранами.
Но что представляет собой 11-мерная теория? Согласно Виттену и другим исследователям, при низких (по сравнению с планковской) энергиях она аппроксимируется почти позабытой все-ми 11-мерной квантово-полевой теорией супергравитации. А как же тогда описать эту теорию при высоких энергиях? Сейчас этот вопрос тщательно исследуется. Как показано на рис. 12.7
12.8, в такой 11-мерной теории существуют двумерные протяженные объекты – двумерные мембраны. Как мы вскоре увидим, важную роль играют и протяженные объекты других раз-мерностей. Однако об этой 11-мерной теории ничего не известно, кроме набора разнородных фактов. Являются ли мембраны ее фундаментальными объектами? Каковы ее определяющие свойства? Благодаря каким ее свойствам она может быть связана со знакомой нам физикой? Ес-ли соответствующие константы связи малы, то лучшие ответы, которые можно дать сейчас, уже описаны в предыдущих главах, так как при малых константах связи мы возвращаемся обратно к теории струн. Но для больших констант связи в настоящее время ответов не знает никто.
Есть старая притча о трех слепцах и слоне. Первый слепец ощупывает бивень слона и го-ворит, что чувствует что-то гладкое и твердое. Второй держится за ногу и описывает что-то шероховатое и мускулистое. Третий слепец держит слона за хвост и говорит о чем-то гибком и хилом. Слыша описания других слепцов, каждый из них думает, что держится за другое живот-ное. Много лет физики были столь же слепы и думали, что разные теории струн действительно являются разными. Но теперь, благодаря второй революции в теории суперструн, наступило прозрение, и они поняли, что все пять теорий струн являются частями тела одного огромного «слона» – М-теории.
Когда на территории одного из пяти полуостровов на теоретической карте рис. 12.11 кон-станта связи струны мала, фундаментальный объект в этой теории выглядит как одномерная струна. Сейчас, однако, у нас появилась новая точка зрения. Если начать двигаться из области Е-гетеротических струн или струн типа НА, увеличивая значения соответствующих констант связи, то постепенно мы сместимся к центру карты рис. 12.11, и объекты, казавшиеся одно-мерными струнами, начнут вытягиваться, превращаясь в двумерные мембраны. Более того, в результате более сложной последовательности преобразований дуальности, включающих как изменения констант связи струн, так и изменения вида свернутых измерений, можно беспре-
14
пятственно перейти из любой точки на рис. 12.11 к любой другой ее точке. А так как двумерные мембраны, которые мы открыли, рассматривая Е-гетеротические струны и струны типа ПА, нам будут сопутствовать при переходе к любой из трех других формулировок, мы приходим к выводу, что двумерные мембраны на самом деле присущи любой из пяти формулировок теорий струн.
Чтобы разобраться в каждой из формулировок теории струн, не прибегая к теории возму-щений, теоретики во многом опирались на принципы суперсимметрии. В частности, характе-ристики БПС-состояний, массы и заряды частиц в этих состояниях, однозначно определяются суперсимметрией, и это позволило понять некоторые свойства теории в области сильной свя-зи без необходимости проведения прямых вычислений невообразимой сложности. На самом деле, благодаря пионерским работам Хоровица и Строминджера, а также последующей заме-чательной работе Польчински, о БПС-состояниях мы знаем даже больше. В частности, нам не только известны их заряды и массы, но имеется ясное представление о том, как эти состоя-ния выглядят. И последнее, возможно, самое удивительное. Некоторые из БПС-состояний – одномерные струны. Другие представляют собой двумерные мембраны. Пока все действую-щие лица знакомы. И вот – сюрприз: некоторые состояния трехмерны, четырехмерны,. . . На самом деле диапазон возможных пространственных размерностей включает все значения до девяти включительно. Теория струн или теория, которую сейчас называют М-теорией (какое бы окончательное название ей ни дали), в действительности содержит протяженные объекты целого ряда пространственных измерений. Протяженные трехмерные объекты физики назвали 3-бранами, протяженные четырехмерные – 4-бранами, и так далее до 9-бран (в общем случае для протяженного объекта, имеющего р пространственных измерений, физики придумали не очень благозвучный термин р-брана). Иногда, используя эту терминологию, струны называют 1-бранами, а мембраны – 2-бранами. Тот факт, что все эти протяженные объекты являются равноправными объектами теории, побудил Пола Таунсенда провозгласить «демократию бран».
Браны 2
Есть ещё одно важное следствие: электрон имеет электрический заряд из-за калибровочной симметрии. Последнее лучше всего проиллюстрировать аналогией между калибровочной и вра-щательной симметрией. Калибровочная симметрия электрона настолько похожа на вращатель-ную симметрию, что иногда даже говорят о калибровочном «вращении». И вот это абстрактное квантовомеханическое «вращение» электрона и есть, по сути, его электрический заряд. Заряд электрона отрицателен, а заряд позитрона положителен, — это означает, что они в абстрактном калибровочно-симметричном смысле «вращаются» в разные стороны.
Оказывается, что введение дополнительных измерений позволяет сделать предыдущий раз-говор более предметным. Допустим, что дополнительное измерение имеет форму кольца, и представим, что частица движется в этом измерении по окружности. Она может двигаться как по часовой стрелке, так и против. Если это кольцо очень-очень мало, мы не сможем обнаружить движение в этом измерении, но тем не менее частица будет вращаться в этом измерении либо в одну, либо в другую сторону. Двигаясь в одном направлении, частица будет иметь положи-
15
тельный заряд, двигаясь в другом — отрицательный. Представляя дополнительные измерения
виде миниатюрных колец, или, как принято говорить, свёрнутых измерений, мы не должны удивляться тому, что их калибровочная симметрия настолько похожа на вращательную. Ка-либровочная симметрия электрического заряда — фактически то же самое, что и симметрия окружности. Частица может двигаться в этом измерении только в двух возможных направле-ниях — условно говоря, по часовой стрелке и против. Соответственно в природе существуют только два электрических заряда: положительный и отрицательный.
Идея представить электрический заряд в виде движения в свёрнутом измерении была пред-течей теории струн. Ей почти сто лет, но за это время никому не удалось что-нибудь реально посчитать на её основе. Часть великого замысла теории струн как раз и состоит в том, чтобы заставить упомянутую идею работать, но у нас есть много дополнительных измерений, чтобы поиграть с ними, и это вселяет некоторую надежду. То есть независимо от того, правилен наш подход или нет, следует признать, что электрический заряд и электромагнитные взаимодействия фундаментально связаны с вращательной симметрией и с движением по окружности.
Может показаться, что мы слишком далеко ушли от D-бран, но это не так. D-браны как раз служат примером тому, о чём мы только что говорили. Как мы видели, D-браны обладают вращательной симметрией. Вспомним хотя бы сравнение D1-браны с флагштоком посреди тротуара, имеющим ту же симметрию, что и окружность. Вращательная симметрия помогает объяснить многие свойства D-бран, но и калибровочная симметрия играет огромную роль. Вот первый намёк на связь D-бран и калибровочной симметрии: если мы возьмём D1-брану, представляющую собой прямую, и «стукнем» по ней в определённом месте, то от места удара
разные стороны побегут два небольших возмущения. Эти возмущения будут двигаться со скоростью света, ведя себя как безмассовые частицы, и ничто не заставит их остановиться. Мы уже знаем, что безмассовые частицы, такие как фотоны, обладают калибровочной симметрией, и калибровочная симметрия заставляет их быть безмассовыми. То же самое происходит и с возмущениями на D1-бране. Я, конечно, сильно всё упрощаю, потому что возмущения на D1-бране, конечно же, совсем не похожи на фотоны. Например, они не имеют спина, но если мы рассмотрим такие же возмущения на D3-бране, то некоторые из них будут иметь спин и с математической точки зрения ничем не будут отличаться от фотонов. Как только этот факт был установлен, физики тут же кинулись строить модели мира, в которых он представляет собой D3-брану. Правда, всё ещё остаются дополнительные измерения, но мы не можем их наблюдать, поскольку мы застряли на бране. Кажется, что достаточно оснастить эту брану фотонами, и идея будет вполне жизнеспособной. Всё, что нам нужно для полного удовлетворения, это ещё пятнадцать или около того элементарных частиц. К сожалению, D3-брана сама по себе не обеспечивает их существования. В настоящее время в этом направлении ведутся интенсивные исследования, цель которых состоит в том, чтобы выяснить, какие ещё ингредиенты нам нужны для построения мира на D3-бране.
Струнные теоретики возлагают большие надежды на то, что все наши представления о заряде и калибровочной симметрии могут просто вытекать из скрытой многомерной природы мира.