Искусственный интеллект— это способность компьютера обучаться, принимать решения и выполнять действия, свойственные человеческому интеллекту.
Кроме того, ИИ — это наука на стыке математики, биологии, психологии, кибернетики и ещё кучи всего. Она изучает технологии, которые позволяют человеку писать «интеллектуальные» программы и учить компьютеры решать задачи самостоятельно. Главная задача ИИ — понять, как устроен человеческий интеллект, и смоделировать его.
В области искусственного интеллекта есть подразделы. К ним относятся робототехника, наука о компьютерном зрении, обработка естественного языка и машинное обучение.
Каким бывает искусственный интеллект
Слабый ИИ (Weak, или Narrow AI).
•Слабый интеллект — тот, что нам уже удалось создать. Такой ИИ способен решать определённую задачу. Зачастую даже лучше, чем человек. Например, как Deep Blue— компьютерная программа, которая обыграла Гарри Каспарова в шахматы ещё в 1996 году. Но такая Deep Blue не умеет делать ничего другого и никогда этому не научится. Слабый ИИ используют в медицине, логистике, банковском деле, бизнесе
Сильный ИИ (Strong, или General AI)
•Как выглядел бы сильный искусственный интеллект, можно увидеть в игре Detroit: Become Human
•Во вселенной Detroit роботы способны учиться, мыслить, чувствовать, осознавать себя и принимать решения. Одним словом, становятся похожи на человека. А в обычной жизни ближе всего к General AI чат-боты виртуальные ассистенты, которые имитируют человеческое общение. Здесь ключевое слово — имитируют. Siri или Алиса не думают — и неспособны принимать решения в ситуациях, которым их не обучили. Сильный искусственный интеллект пока остаётся мечтой.
Суперинтеллект (Superintelligence)
•Мы не только не создали суперинтеллект, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей. Проще говоря, что-то из области фантастики.
Искусственный интеллект и технологии больших данных в медицине
Области робототехники и искусственного интеллекта тесно связаны друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов составляют ещё одно направление ИИ.
Робототехника опирается на такие дисциплины как электроника, механика, программирование. Выделяют строительную, промышленную, бытовую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.
Интеллектуальность требуется роботам, чтобы манипулировать объектами, выполнять навигацию с проблемами локализации (определять местонахождение, изучать ближайшие области) и планировать движение (как добраться до цели).
Разработка и производство медицинских роботов в XXI веке достигли таких технических и экономических успехов, что информация о них с каждым годом все меньше кажется научной фантастикой.
Достижения в области робототехники и систем искусственного интеллекта с каждым днем оказывают все большее влияние на жизнь людей в прямом смысле этого слова. Технические и экономические успехи роботостроения привели к тому, что медицина стала все чаще прибегать к помощи роботов. Сегодня медицинские роботы способны проводить сложные хирургические операции, помогают ставить точные диагнозы, ухаживают за больными и этим список их возможностей не ограничиваются.
Разделы:
1.Робоврачи
2.Робокомплексы
3.Робосестры
4.Робопротезы
5.Роботы внутри нас
6.Реабилитационные роботы
7.Робопособия
Что такое медицинские роботы и зачем они нужны?
Медицинский робот – робот, который создан для выполнения каких-либо действий, связанных с медициной и здоровьем человека в частности. Есть даже вариант нанороботов постоянно присутствующих в крови человека, которые способны выводить токсины, залечивать раны и делать героев фантастических боевиков непробиваемыми в прямом смысле.
В реальности медицинские роботы развиваются по схожим направлениям. Во-первых, это хирургические комплексы. И пусть самостоятельность в принимаемых решениях у них чисто условная, но на счету этих медицинских роботов уже сотни успешных операций.
Вторым основополагающим направлением сегодня можно назвать класс роботов-помощников. Эти автоматизированные медбратья и медсестры имеют гуманоидный и не очень вид, но делают большие успехи в оказании помощи человеческому медперсоналу и больным.
Третье направление связано, в первую очередь, с протезированием, разработкой заменителей конечностей человека и созданием экзоскелетов. Искусственные «умные» конечности не только помогают конкретным больным, но служат и для отработки новых технологий роботостроения.
Несколько в стороне от основной массы роботизированных устройств медицинского назначения находятся средства передвижения для людей потерявших способность двигаться самостоятельно. Будь то инвалидное кресло с интеллектуальным управлением или средство для эвакуации раненых с поля боя.
Направлением под номером пять можно считать разработку протезов внутренних органов человека и создание медицинских нанороботов. Здесь тоже есть успехи, но они не настолько впечатляющи, как в хирургии.
Терапевтические назначения и лечение отдельных заболеваний.
•В этой области методы искусственного интеллекта применяются, в частности, для решения проблемы ошибок в дозировке лекарств. И результаты показали, что искусственный интеллект может назначать дозировки более точно, чем терапевты, повышая эффективность лечения и попутно экономя значительные суммы для клиник.
•Так, один из подходов, называемый параболическим персонализированным дозированием (PPD), основан на алгебраических уравнениях для связи фенотипа с концентрацией препарата (в исследовании рассматривались иммунодепрессанты). Путем исследования реакций пациента во время курса лечения по выведенному уравнению создается двумерная парабола, указывающая на следующую дозу, которую должен получить пациент. Подход PPD был протестирован на четырех пациентах, а затем его сравнили со стандартными методами терапии, когда лекарства назначались по рекомендации врача. Пациенты, лечение которых осуществлялось по PPD, выходили за пределы минимально необходимых дозировок реже и в течение более коротких периодов времени, чем контрольная группа под руководством терапевта, что позволяет предположить, что уравнение точнее предсказывает следующие дозы.
•Подход PPD впервые был опробован в трансплантационной медицине, однако прогнозируется его широкое применение за пределами этой области, в том числе и обычными терапевтами. Дело в том, что параболическое персонализированное дозирование не зависит от механизма заболевания или выбора препарата и, таким образом, может определять оптимальные схемы лечения для многих типов пациентов. Например, применение PPD возможно и в тех случаях, когда пациент подвергается таким процедурам, как гемодиализ, которые могут препятствовать распределению лекарства в организме. Это возможно, поскольку парабола смещается по мере того, как добавляются новые лекарства или убираются уже не нужные, или когда пациент проходит дополнительные клинические процедуры.