✅ В этой статье разберем решение нестандартных задач и задач повышенной сложности на формулы сокращенного умножения. Соответственно, для того, чтобы выполнить задание необходимо знать формулы сокращенного умножения,которые проходят в 7-м классе, но отнюдь не каждый 11-ти классник сможет решить эти примеры) 😄⭐ Вот сами задания: Пример №1 Вычислить значение выражения (a^8-390625/625a^4)*(5a/a^2+25) при (a/5 - 5/a = 10) Для начала необходимо представить первый множитель исходного выражения в виде разности 2-х дробей с одинаковым знаменателем и каждую получившуюся дробь сократить. Далее заметим, что получившаяся разность - это разность квадратов, и раскроем её по формуле сокращенного умножения. Рассмотрим получившиеся множители по-отдельности. Последний множитель - это сумма квадратов. Сумму квадратов двух выражений можно представить в виде суммы квадрата разности этих выражений и их удвоенного произведения: Воспользуемся этим свойством для преобразования последнего множителя из получив
Нестандартные примеры на формулы сокращенного умножения
27 февраля 202427 фев 2024
269
2 мин