Найти тему
НТВ

Прививки от рака: спасительные технологии

Оглавление

Давняя мечта человечества — вакцины от рака, которые могут кардинально изменить жизнь. Долгое время даже приблизиться к ней не удавалось. Воплотить эту мечту в реальность помогла технология, за которую в 2023 году была присуждена Нобелевская премия по медицине. На ее основе уже созданы вакцины, которые проходят клинические испытания. О том, как они работают и насколько эффективны, читайте в нашем материале.

Попасть в матрицу

В 2023 году биохимики Каталин Карико и Дрю Вайсман получили Нобелевскую премию по физиологии и медицине. Их открытия позволили разработать новый тип вакцин, это спасло в разгар пандемии ковида многие жизни.

Старые вакцины создавались на основе убитых или ослабленных вирусов. Организм «знакомился» с ними и учился вырабатывать иммунный ответ.
В последние десятилетия научились делать и новые вакцины: для них достаточно взять только малую часть вирусного генетического кода. Например, ту, что кодирует те самые «шипики» у вируса ковида (под микроскопом они похожи на корону, за что семейство «коронавирусов» и получило свое название). Этого хватит, чтобы научиться вырабатывать специальные антитела ко всему вирусу.

Но как доставить это кусочек кода в наш организм? Для этого ученые берут другой вирус, безвредный и хорошо изученный. В нем подменяют часть ДНК или РНК на ту, что есть в опасном вирусе. И такую «подмену» переносят в организм во время прививки. Такой безвредный носитель называют «вектором». А сами вакцины называют векторными («Спутник» как раз из таких).

Оказалось, что это еще и более безопасный способ познакомиться с вирусом: сам возбудитель болезни к нам не попадает, а измененные вирусы в наших клетках не размножаются — им отключают соответствующий ген. Но именно поэтому у таких вакцин есть одна проблема. Векторный вирус может размножаться только в специальных условиях — в клеточной культуре в пробирке. А значит, чтобы производить векторные вакцины в большом количестве, нужно иметь много клеток в пробирке — а их еще вырастить надо. Во время пандемии время было критически важно.

-2

Но появилась еще одна идея. Если мы должны научиться атаковать белки вируса своими антителами, то почему бы не заставить наш организм самому произвести этот вирусный белок или даже его часть? И тогда он сам же запустит иммунный ответ и научится побеждать этот вирус.

Об этом задумались еще в прошлом веке. И даже придумали способ, как это сделать.

Во время вакцинации надо перенести в организм саму матрицу, которая отвечает за производство нужного белка. Такой «матрицей» является молекула мРНК (ее так и называют — матричная рибонуклеиновая кислота). В мРНК закодирована информация о том, какой именно белок нужно произвести организму. Это своего рода инструкция для изготовления одного белка. Достаточно перенести в организм такую же инструкцию, как у вируса, — и дело сделано.

В 1980-х даже придумали, как получать нужные молекулы-матрицы — мРНК — без культуры клеток, в пробирке. Но вот сделать вакцину не получалось. Хотя в теории все должно было сработать, на деле такие РНК почему-то не слишком помогали вырабатывать нужные белки в клетках и тканях организма. А главное: когда эти мРНК вводили, начиналось воспаление. Почему-то так реагировал иммунитет: он распознавал саму мРНК как чужеродную и не давал ей произвести нужный белок. Хотя вроде в ядрах наших клеток есть такие же мРНК.

-3

И вот биохимики Карико и Вайсман из Пенсильванского университета придумали, как обмануть иммунитет. Они поняли, что цепочка молекулы РНК, которую синтезирует сам организм в ядре своей клетки, выглядит немного по-другому, чем та, что получалась в пробирке.

РНК содержит четыре азотистых основания — это «буквы генетического кода», из них и складывается цепочка молекулы РНК. И оказалось, что у млекопитающих эти основания — химически модифицируются. Может, в этом все дело?

Ученые повторили эти модификации в пробирке и воспаления исчезли. К тому же оказалось, что такие модифицированные РНК еще и заметно увеличивают выработку белка, который в ней закодирован.

Вакцины на основе молекул мРНК, наконец, стали возможны. Они оказались очень эффективными при борьбе с ковидом. Одно из преимуществ — их можно быстро изменять, ведь вирусы стремительно мутируют.

Но изначально эта технология разрабатывалась для другого. Рак — вот что было главной целью ученых. Они искали, как можно доставить в клетки искусственно синтезированные молекулы мРНК, чтобы победить именно его.

И теперь это становится реальностью.

К каждому раку — свой подход

По оценке ВОЗ, каждый пятый мужчина и каждая шестая женщина на планете рано или поздно заболеют раком. Рак — вторая по частоте причина смерти в мире. Больше всего летальных исходов вызывает рак легких. На втором месте — колоректальный рак. Потом идут рак печени, рак груди и рак желудка.

Рак — это не одно заболевание, разновидностей его множество. Но у них есть общая причина: переродившиеся клетки начинают бесконтрольно делиться. Для нормальных клеток на это установлен «строгий запрет» и контролируют его сразу несколько генетических механизмов. Но из-за мутаций эти механизмы могут выйти из строя, и клетки, получившие свободу делиться, забирают ресурсы у организма, образуя опухоли в различных органах.

-4

Течение, скорость распространения и агрессивность заболевания во многом зависят от того, из каких клеток и тканей происходят раковые клетки. Поэтому для разных видов рака нужны разные лекарства и разные методы лечения. Существуют классические (химиотерапия, лучевая, хирургическое вмешательство) и изобретенные относительно недавно (таргетная терапия, иммунная, CAR-T-терапия).

И в этой битве у мРНК-препаратов — большое будущее.

Чем вакцина от рака отличается от обычных

Прежде, чем болезнь началась, прививаться от рака бессмысленно, так как разные виды рака отличаются друг от друга, а значит, методы защиты от них должны быть разными — универсальной вакциной не обойдешься.

Поэтому вакцину от рака, в отличие от привычных нам вакцин от инфекционных болезней, не используют до того, как человек заболел. Она нужна, когда процесс развития ракового заболевания в организме уже идет. Или когда уже удалось убить раковые клетки.

Но есть исключение: вакцина от вируса папилломы человека (ВПЧ) снижает риск заболеть раком шейки матки до 90%. Некоторые из разновидностей папилломавируса многократно увеличивают вероятность такого рака. А вакцина работает по «классической» схеме: вырабатывает иммунитет против вируса. Ее вводят до того, как человек заразился онкогенными штаммами ВПЧ.

Остальные вакцины от рака, хоть и не являются профилактическими, но главный принцип у них тот же: они знакомят иммунную систему с характерным антигеном, чтобы организм научился запускать цепочку защитных реакций.

-5

Раковые клетки способны обманывать наш иммунитет, маскироваться, а иногда даже отключать имунные клетки. Именно поэтому приходится «знакомить» организм с раком «вручную». Как выглядят раковые агенты, надо показать конкретному виду иммунных клеток. Они называются дендритными. Эти клетки постоянно «заняты» тем, что ищут в организме вражеских агентов, потом ловят их и расщепляют на части, чтобы Т-клетки (лимфоциты) могли эти части обнаружить и запустить иммунный ответ. Дендритные клетки образуются в костном мозге, но они есть во всех частях нашего организма, в органах и тканях, в крови.

Исследования, за которые присудили Нобелевскую премию-2023, как раз обеспечили очень эффективный способ познакомить дендритные клетки с антигеном. Молекулы «вакцинной» мРНК, которые должны произвести «вражеский» белок, смогли попасть прямо внутрь дендритных клеток. Чтобы дендритные клетки «проглотили» эту вирусную РНК из вакцины, молекулу РНК «упаковывают» в липидные наночастицы — своего рода миниатюрные контейнеры. Они защищают РНК и позволяют ей проникнуть через клеточную мембрану. И когда «матрица» попала в имунную клетку, в той — запускается синтез белков возбудителя и сразу развивается иммунный ответ.

-6

Однако, как считает глава Института им. Н. Ф. Гамалеи академик РАН Александр Гинцбург, все мРНК-вакцины имеют серьезные побочные эффекты, которые могут угрожать жизни человека. Поэтому их можно применять только в том случае, когда другого выбора уже нет, например, для лечения агрессивного рака.

«мРНК-технологии имеют большое количество побочек, в том числе миокардитов как внешней, так и внутренней оболочки сердечной камеры. Они возникают за счет того, что наша иммунная система воспринимает те липиды, в которые упаковано мРНК, как чужеродные. Кроме того, мРНК в плане эволюции — нонсенс для организма: когда оно вводится в таких количествах, как при вакцинации, он воспринимает их как чужеродные», — пояснил Гинцбург.

Но еще прежде, чем технология мРНК-вакцин стала возможной, ученые придумали другой способ научить имунные клетки бороться с раковыми агентами.

Они решили брать сами дендритные клетки у больного раком человека. Их помещают в специальную емкость и туда же добавляют «обломки» раковой опухоли (ее тоже берут у самого пациента). Так в лабораторных условиях имунным клеткам «показывают» рак и учат его распознавать. А потом уже натренированные дендритные клетки отправляют обратно в организм больного. Это перезапускает его имунную систему: рак уже не способен обмануть натренированные в пробирках клетки.

Вот этот «коктейль» из дендритных клеток, которые уже повидали обломки опухоли в лаборатории и умеют их опознавать — еще один вид вакцины против рака. Такую терапию дендритными клетками используют в медицине с 2010 года. И результаты впечатляют. Полтора десятка лет она показывает эффективность при лечении больных раком кожи, почки, молочной железы, предстательной железы, а также раком толстой кишки и яичников. В России эта методика тоже успешно применяется.

Подправить вирус

Сегодня в разных странах проходит множество клинических испытаний, и некоторые результаты применения мРНК-вакцин от рака вполне обнадеживающие. Россия тоже подошла к созданию вакцин от рака и иммуномодулирующих препаратов нового поколения.

Так, для создания противоопухолевых препаратов ученые используют способность вирусов уничтожать раковые клетки. В Институте химической биологии и фундаментальной медицины СО РАН совместно с ГНЦ «Вектор» и компанией «Онкостар» создали препарат, получивший разрешение на клинические испытания.

Ученые взяли за основу осповакцину. «Мы немного подправили вирус, вырезав гены ростового фактора и тимидинкиназы. Без них он утратил способность размножаться в каких-либо клетках, кроме раковых, и ослабел примерно в 200 раз», — пояснил заведующий лабораторией биотехнологии ИХБФМ СО РАН, кандидат биологических наук Владимир Рихтер.

В 2021-м препарат начали испытывать на пациентках в терминальной стадии рака молочной железы. Параллельно ученые готовят протокол исследования препарата для лечения опухолей головного мозга. Планируется, что в 2024 году начнутся первые клинические испытания по использованию вакцины для лечения этого вида рака, в частности, глиобластомы — самой агрессивной и распространенной формы опухоли головного мозга.

Компания «Нанолек» завершила третью фазу клинических исследований первой российской вакцины от ВПЧ. Препарат может выйти на рынок в 2025 году. Вакцина показала высокую эффективность и безопасность. Известно, например, что вакцинация от ВПЧ снизила до нуля распространенность рака шейки матки в Шотландии. Существующие импортные вакцины не включены в национальный календарь прививок из-за дороговизны. Правда, их можно сделать в поликлиниках бесплатно по желанию.

-7

Американская Moderna и немецкая Merck проводят исследования противораковой вакцины, которая снижает риск смертности и рецидива от меланомы. Около 79% тех, кому вводили противоопухолевый препарат Keytruda (используется при терапии более чем десяти видов раковых заболеваний, в том числе меланомы, немелкоклеточного рака легких, рака головы, шеи, шейки матки, эндометрия и др) и вакцину, находились в ремиссии в течение 18 месяцев испытания. При лечении только Keytruda такой результат был у 62%. Среди незначительных побочных эффектов отмечается усталость.

Вакцина была создана для каждого пациента после изучения генетических последовательностей их опухолей. В основе препарата — как раз мРНК, которая «обучает» иммунную систему человека распознавать в клетках маркеры аномального роста.

В Англии с 2020 года проходит тестирование вакцины, «выключающей» в организме ген, отвечающий за передачу сигналов при работе клеток и в случае мутации запускающий процесс онкообразования.

Также в Англии начались испытания экспериментальной вакцины Moderna против рака под названием мРНК-4359. Первым, кто получил препарат, стал местный 81-летний пенсионер. Вакцина предназначена для лечения меланомы и рака кожи.

-8

Между тем Daily Mail сообщила, что первая вакцина против рака кишечника станет доступна через два года. Ее уже опробовали на пациентах из Британии и Австралии.

А в Гарварде работают над вакциной, запускающей механизм «клеточного самоубийства», — это когда раковые клетки выполняют команду на уничтожение им подобных.

Немецкая же BioNTech ведет клинические исследования сразу 30 видов рака. Среди них: рак кожи, кишечника, матки, простаты и легких. Ученые ищут варианты вакцин, которые помогут иммунитету самостоятельно уничтожать онкологию, и к 2026 году планируют их лицензировать и выпустить. Как отметили в BioNTech, некоторые из исследований очень результативны.

А создатели белорусско-американской ДНК-вакцины от рака «Еленаген» уверяют, что их препарат — уникальный и уже показал лучшие результаты в мире в лечении рака яичников. А вот при раке желудка «Еленаген» неэффективен, как и при раке поджелудочной железы.