Металлами называют химические элементы, в простых веществах которых наблюдается металлическая химическая связь.
Из известных открытых элементов большинство (более 80) относятся к металлам. Атомы металлов обладают, как правило, большим радиусом, поэтому в отличие от неметаллов легко отдают внешние электроны, т.е. являются сильными восстановителями. Атомы металлов способны превращаться в положительно заряженные ионы не только при химических реакциях. В любом образце металла часть атомов «теряют» внешние электроны и превращаются в катионы. Оторвавшиеся от атомов электроны относительно свободно перемещаются по образцу металла, как бы цементируя отдельные слои положительно заряженных ионов, находящихся в узлах кристаллической решетки. Так как электроны находятся в непрерывном движении, то при их столкновении с положительно заряженными ионами последние превращаются в нейтральные атомы, а затем вновь в ионы и т.д.
Типы кристаллических решеток.
Все металлы в твердом состоянии представляют собой кристаллы. Кристалл – это совокупность атомов, расположенных в пространстве не хаотично, а в геометрически правильной последовательности. Пространственное расположение атомов и образует кристаллическую решетку.
В узлах пространственной кристаллической решетки металла правильно расположены положительно заряженные ионы, а между ними перемещаются свободные электроны – электронный газ. Переходя от одного катиона к другому, они осуществляют связь между ионами и превращают кристалл металла в единое целое. Эта связь, называемая металлической, возникает между атомами металлов за счет перекрывания электронных облаков внешних электронов. Металлическая связь отличается от неполярной ковалентной связи своей ненаправленностью. В кристалле металлического типа электроны не закреплены между двумя атомами, а принадлежат всем атомам данного кристалла, т. е. делокализованы. К особенности структуры металлических кристаллов относятся большие координационные числа, которым соответствует высокая плотность упаковки.
Кристаллическая решетка каждого металла состоит из положительно заряженных ионов одинакового размера, расположенных в кристалле по принципу наиболее плотной упаковки шаров одинакового диаметра.
Физические свойства металлов.
Особое строение кристаллических решеток металлов обусловливает их общие свойства. В соответствие именно с таким строением металлы характеризуются общими физическими свойствами.
а) твердость – все металлы кроме ртути, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром – царапает стекло.
б) плотность. Металлы делятся на мягкие (5г/см³) и тяжелые (меньше 5г/см³).
в) плавкость. Металлы делятся на легкоплавкие и тугоплавкие.
г) электропроводность, теплопроводность металлов обусловлена их строением. Хаотически движущиеся электроны под действием электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.
При повышении температуры амплитуда движения атомов и ионов, находящихся в узлах кристаллической решетки резко возрастает, и это мешает движению электронов, и электропроводность металлов падает.
д) металлический блеск является следствием отражения световых лучей, а его интенсивность определяется долей поглощаемого света. Большинство металлов почти полностью отражают свет всех длин волн спектра, в связи с чем имеют белый или серый цвет. Наиболее ярко блестят палладий и серебро. Некоторые металлы (медь, золото, цезий) поглощают зеленый или голубой свет сильнее, чем свет других длин волн, поэтому окрашены в желтый или красный цвета.
В мелкораздробленном состоянии многие металлы теряют блеск. Например, железо, платина, хром становятся черного или серого цвета, тогда как алюминий и магний в порошкообразном состоянии продолжают блестеть. Интенсивность блеска зависит от доли поглощенного света: чем меньше света поглощает металл, тем более интенсивным будет блеск.
Все металлы полностью отражают радиоволны, что используется для обнаружения различных металлических объектов с помощью радиоволн (радиолокация).
е) пластичность. Механическое воздействие на кристалл с металлической решеткой вызывает только смещение слоев атомов и не сопровождается разрывом связи, и поэтому металл характеризуется высокой пластичностью.
ж) фотоэлектрический эффект – это свойство металлов выбрасывать электроны с поверхности под действием электромагнитных волн, что обусловлено слабой связью валентных электронов с ядром. Чем слабее эта связь, тем меньше энергии необходимо для отрыва электрона. Именно поэтому в щелочных металлах фотоэлектрический эффект выражен сильнее.
На границе раздела двух металлов возникает контактная разность потенциалов, вызванная различной концентрацией электронов проводимости и разной работой выхода электронов у соприкасающихся поверхностей.
з) магнитные свойства присущи фактически всем металлам, поскольку они являются магнетиками – веществами, изменяющими или приобретающими магнитный момент под действием внешнего (стороннего) магнитного поля. Мерой измерения магнитных свойств металлов служат следующие величины: остаточная индукция, коэрцитивная сила и магнитная проницаемость (магнитная восприимчивость).
Металлы по магнитным свойствам могут быть разделены на три основные группы:
· диамагнетики – выталкиваются из магнитного поля и ослабляют его;
· парамагнетики – втягиваются магнитным полем, незначительно усиливая его;
· ферромагнетики – усиливают магнитное поле на порядки величин.
К диамагнетикам относятся такие металлы, как медь, серебро, золото, кремний, бериллий и металлы подгруппы цинка, галлия, германия. Им свойственна отрицательная магнитная восприимчивость, поскольку под действием внешнего магнитного поля в них возникает намагниченность, направленная ему навстречу. Парамагнетики – металлы с небольшой положительной восприимчивостью (в основном щелочные и щелочноземельные), которые намагничиваются в направлении внешнего поля. Ферромагнетики включают металлы, обладающие высокой магнитной восприимчивостью – это железо, кобальт, никель. Есть металлы и сплавы, которые не принадлежат трем упомянутым группам: антиферромагнетики (ряд редкоземельных металлов), ферриты (соединения оксида железа) и т. д.
Металлы, применяемые в технике, подразделяются на черные (железо и его сплавы), цветные (все остальные, включая магний и алюминий), драгоценные (золото, платина, палладий, иридий), редкие (цирконий, иттрий, лантан, церий и др.).
Некоторые металлы, например, железо, титан, олово и др. способны по достижении определенных температур изменять кристаллическое строение. Это явление получило название аллотропии или полиморфизма, а сами переходы от одного кристаллического строения к другому называются аллотропическими или полиморфными.
Сплавы металлов.
Сплав – макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.
Сплавы состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплав легирующих и модифицирующих элементов, а также из неудалённых примесей (природных, технологических и случайных).
По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые – прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений.
По способу получения заготовки (изделия) различают литейные (например, чугуны, силумины), деформируемые (например, стали) и порошковые сплавы.
В твердом агрегатном состоянии сплав может быть гомогенным (однородным, однофазным - состоит из кристаллитов одного типа) и гетерогенным (неоднородным, многофазным).
Электролизом водных растворов получают сравнительно малоактивные металлы (медь, серебро, никель и т. д.). А электролизом расплавов солей – высокоактивные (щелочные и щелочноземельные металлы, алюминий).
Получение чистых металлов. Некоторые отрасли промышленности и техники нуждаются в металлах особой чистоты. Например, они востребованы при конструировании ядерных реакторов, в электронной и медицинской технике. Особо чистые металлы отличаются по своим физическим свойствам от обычных. Такие свойства, как пластичность, электро- и теплопроводность, а также сопротивление коррозии у чистых металлов имеют более высокие значения.
В настоящее время проблема получения чистых и сверхчистых металлов решается разными способами.
Электролитическое рафинирование – процесс электролиза с использованием чернового металла в качестве анода (активного). При пропускании постоянного электрического тока через электролит черновой металл окисляется (растворяется), а на катоде, изготовленном из чистого металла, из раствора (расплава) восстанавливается (осаждается) металл.
Термическая диссоциация летучих соединений – очистка, основанная на способности некоторых соединений металлов разлагаться при высокой температуре. Например, иодиды титана и циркония, являясь летучими соединениями, при повышении температуры разлагаются на чистый металл и йод.
Зонная плавка – процесс, основанный на различной степени растворимости примесей в твердом и расплавленном состояниях. Через зону с высокой температурой медленно продвигают стержень из очищаемого металла. По мере продвижения расплавленная область, где собираются все примеси, постепенно перемещается в конец стержня, который входит в горячую зону последним. Операцию повторяют многократно, каждый раз механически отделяя от чистого металла конец стержня, содержащий примеси.