Найти тему
О всяком разном

Критерии работоспособности деталей машин

1. ТРЕБОВАНИЯ К ДЕТАЛЯМ, КРИТЕРИИ РАБОТОСПОСОБНОСТИ

Основными критериями работоспособности являются:

- прочность;

- жесткость;

- износостойкость;

- теплостойкость;

- виброустойчивость.

Значение того или иного критерия для данной детали зависит от ее назначения и условий работы.

Жесткость – это способность конструкции и ее элементов сопротивляться изменениям формы и размеров. Например, при недостаточной жесткости валов в зубчатой передаче может возникнуть прогиб, который приводит к неравномерности распределения нагрузки по зубьям колес из-за уменьшения площади контакта и заклиниванию подшипников качения из-за перекоса валов (пример см. рис.1.).

Недостаточная жесткость деталей влияет на их взаимное расположение в механизмах, вызывает в подвижных сопряжениях повышенное трение, давление, температуру и др.

Прочность - главный критерий - способность детали сопротивляться разрушению под действием внешних нагрузок. Следует различать прочность материала и прочность детали. Для повышения прочности надо использовать правильный выбор материала и рациональный выбор формы детали. Увеличение размеров - очевидный, но нежелательный путь.

Жесткость - способность детали сопротивляться изменению формы под действием нагрузок.

Износостойкость - способность детали сопротивляться истиранию по поверхности силового контакта с другими деталями. Повышенный износ приводит к изменению формы детали, физико-механических свойств поверхностного слоя.

Меры по предупреждению износа:

а) правильный подбор пар трения;

б) снижение температуры узла трения;

в) обеспечение хорошей смазки;

г) предотвращение попадания частиц износа в зону контакта.

Теплостойкость - способность детали сохранять свои расчетные параметры (геометрические размеры и прочностные характеристики) в условиях повышенных температур. Заметное снижение прочности наступает для черных металлов при t = 350-4000, для цветных - 100-1500. При длительном воздействии нагрузки в условиях повышенных температур наблюдается явление ползучести- непрерывная пластическая деформация при постоянной нагрузке.

Для увеличения теплостойкости используют:

а) материалы с малым коэффициентом линейного расширения;

б) специальные жаропрочные стали.

Виброустойчивость - способность детали работать в заданном режиме движения без недопустимых колебаний.

Надежность - способность детали безусловно работать в течение заданного срока службы.

Кн= 1-Q (1.1.1),

где Кн - коэффициент надежности - вероятность безотказной работы машины,

Q - вероятность отказа детали.

Если машина состоит из n деталей, то Кн = 1- nQ , то есть меньше единицы, чем меньше деталей в машине, тем она более надежная.

2. РАСЧЕТ КОНСТРУКЦИЙ НА ЖЕСТКОСТЬ

Различают объемную жесткость (брус, пластина, оболочка) и контактную жесткость, т. е. жесткость, связанную с контактными деформациями поверхностных слоев в местах контакта деталей.

Объемная жесткость оценивается коэффициентом жесткости:

Величина обратная жесткости называется податливостью:

Факторы, влияющие на жесткость:

- модуль упругости (Е, G);

- геометрические характеристики сечения детали (площадь, момент инерции и др.);

- вид нагрузки и типы опор.

Методы повышения жесткости:

- устранение изгиба (т.к. металлы лучше работают (воспринимают) растяжение-сжатие);

- рациональное расположение и изменение количества опор (что приводит к уменьшению прогиба и плеч изгибающих моментов);

- выбор рациональной формы поперечного сечения детали;

- применение в конструкции ребер жесткости (что приводит к изменению геометрических характеристик сечения деталей);

- уменьшение числа стыков (монолитная конструкция обладает большей жесткостью, чем конструкция аналогичного объема, изготовленная с помощью сборочных операций (сварки, свинчивания и т.д.));

- повышение качества поверхности (использование деталей с низкой шероховатостью).

Расчеты на жесткость сводятся к проверкам:

Расчет ведется методами сопротивления материалов.

Виброустойчивость – способность конструкции работать в диапазоне режимов, достаточно далеких от области резонанса (резонанс - совпадение или кратность частоты вынужденных колебаний и частоты собственных колебаний).

Вибрации снижают качество работы машин, увеличивают шум, усиливают изнашивание, вызывают дополнительные переменные напряжения в деталях и усталостное разрушение.

Расчеты на виброустойчивость сводятся к определению частот собственных колебаний механической системы и обеспечению их несовпадения с частотой вынужденных колебаний.

Для снижения колебаний:

- используют маховики и демпферы, рассеивающие энергию колебаний;

- устранение действия внешних сил (например, дополнительных колебаний, вызванных эксплуатируемым в непосредственной близости оборудованием);

- изменение жесткости упругой связи деталей;

- уменьшение шероховатости;

- применение упругих прокладок.

Теплостойкость – способность конструкции работать в пределах заданных температур в течение заданного срока службы.

Нагрев деталей в процессе работы машины приводит к:

- уменьшению зазоров в подвижных сопряжениях деталей, что приводит к схватыванию, заеданию, заклиниванию;

- снижению вязкости масла (т. е ухудшаются смазочные свойства масляного слоя).

Для обеспечения нормального теплового режима работы должен быть обеспечен тепловой баланс, т. е. сравнивают количество выделенной теплоты с количеством отведенной теплоты в единицу времени:

Если условия не выполняются, то применяют:

- искусственное охлаждение,

- проектируют охлаждающие ребра,

- увеличивают размеры корпуса;

- заменяют пары скольжения парами качения;

- применяют материалы с малым коэффициентом линейного расширения.

Износостойкость – свойство материала оказывать сопротивление изнашиванию. Изнашивание - процесс разрушения и отделения материала с поверхности тела при трении, который приводит к постепенному изменению размеров и формы. До 90% деталей подвижных сопряжений машин выходят из строя из-за износа.

- абразивное изнашивание. Это разрушение поверхностных слоев материала трущихся пар твердыми абразивными частицами. Зерна абразива могут попадать на трущиеся поверхности извне, содержаться в материале трущихся пар или в продуктах износа. Методы борьбы: упрочнение поверхностей;

- водородное изнашивание. При работе узлы трения нагреваются, идет выделение водорода, который оседает на поверхности материала и проникает вглубь детали, вызывая охрупчивание, множество микротрещин и образование мелкодисперсного порошка материала. Методы борьбы: использовать стали легированные хромом, титаном, ванадием; снижение температуры в зоне контакта;

- молекулярно-механическое изнашивание. При больших давлениях происходит разрушение защитных масляных пленок на поверхностях сопряженных деталей. Отдельные участки поверхности могут вступить в молекулярный контакт. Происходит схватывание, а последующее перемещение поверхностей вызывает разрушение мест соединений (возникают задиры и борозды). Методы борьбы: повышение твердости за счет термообработки, использование специальных смазок, применение покрытий;

- коррозионно-механическоеизнашивание (фреттинг-коррозия). Разрушение поверхности происходит под действием двух одновременных процессов: коррозии и механического изнашивания. Возникает при очень малых относительных перемещениях (колебаниях) сопряженных поверхностей, при этом происходит разрушение оксидных пленок, образуются ямки и порошок. Продукты износа не удаляются из зоны контакта и превращаются в абразивные частицы. Методы борьбы: уменьшение относительных смещений, поверхностное упрочнение, гальванопокрытия, напыление.

Износ вызывает:

- потери точности;

- снижение КПД;

- увеличение шума;

- увеличение вибрации;

- увеличение зазоров.

Меры борьбы с изнашиванием:

- замена сухого трения жидкостным (хорошее смазывание);

- увеличение твердости (например, закалка снижает износ в 2 раза) и чистоты обработки поверхностей;

- подбор материалов трущихся пар (например, использование антифрикционных материалов).

Прочность – это способность конструкции и ее элементов выдерживать внешние воздействия (нагрузки) без разрушения и появления недопустимых остаточных деформаций. Прочность является важнейшим критерием работоспособности. Ему должны удовлетворять все детали.

Расчеты элементов конструкции на прочность будем осуществлять:

Решение:

1. Воспользуемся формулой для определения действительных напряжений:

2. Определим площадь поперечного сечения:

3. Используя данные формулы определим диаметр стержня:

Для выбора допускаемых коэффициентов запаса прочности в машиностроении пользуются двумя методами: табличным и дифференциальным.

Дифференциальный метод использует формулы, которые учитывают различные факторы, влияющие на прочность рассчитываемой детали:

Методы повышения прочности:

- механическое упрочнение (обкатка роликами, обдувка дробью и др.);

- закалка ТВЧ;

- химическое упрочнение (цементация, азотирование, цианирование);

- термомеханическое упрочнение.

3. КЛАССИФИКАЦИЯ МЕХАНИЗМОВ, УЗЛОВ И ДЕТАЛЕЙ МАШИН

Машина – это устройство, выполняющее механическое движение для преобразования энергии, материалов или информации с целью замены или облегчения физического и умственного труда человека.

По функциональному назначению машины делятся на классы:

- энергетические машины,подразделяемые на машины-двигатели – предназначенные для преобразования энергии любого вида в энергию механического движения (двигатели внутреннего сгорания, электродвигатели); машины-генераторы – для преобразования механической энергии в другой вид;

- технологические машины, предназначенные для изменения размеров, формы, свойства или состояния предмета (металлообрабатывающие станки, прессы, машины пищевой, горной, текстильной, полиграфической, химической промышленности и др.);

- транспортные машины, предназначенные для перемещения грузов, людей и изделий. Эти машины подразделяют на транспортные средства (наземные, водные, воздушные, космические) и подъёмно-транспортные машины (подъемные краны, эскалаторы, конвейеры и т. п.);

- информационные машины, предназначенные для получения и преобразования информации. Информационные машины выполняют контрольно-измерительные операции, функции регулирования и управления технологическими процессами.

Машинный агрегат – сочетание машины-двигателя, передаточных механизмов и исполнительного органа. Для согласования работы имеется система управления.

Деталь – это часть машины, изготовленная из однородного по структуре материала без сборочных операций (винт, гайка, шпонка, зубчатое колесо и т. д.).

Сборочная единица (узел) – это законченная составная часть машины, состоящая из ряда деталей, имеющих общее функциональное назначение (подшипник, муфта, редуктор и т. д.).

Детали и узлы общего назначения – это детали и узлы, которые повсеместно встречаются во многих машинах (болты, валы, подшипники, муфты и т. д.).

Детали и узлы специального назначения – это элементы, которые встречаются в одном или нескольких типах машин (коленчатые валы, поршни, шатуны, гребные винты, крылья самолетов, грузозахватные устройства и т.д.).

Детали и узлы общего назначения делятся на три группы:

- соединительные детали и соединения, которые подразделяются на неразъемные (сварные, заклепочные, клеевые и др.) и разъемные соединения (резьбовые, шпоночные, зубчатые и др.);

- передачи вращательного движения (зубчатые, ременные, цепные и др.);

- детали и узлы, обслуживающие передачи (валы, оси, подшипники и др.).

Работоспособность – это состояние изделия, при котором оно способно выполнять заданные функции с параметрами, установленными требованиями техдокументации.

Детали машин выходят из строя по различным причинам, которые определяются условиями эксплуатации.

Причины отказа отдельных деталей (недостаточная прочность, износостойкость, жесткость, теплостойкость, вибростойкость) называют критериями работоспособности, к числу которых относятся: прочность, жесткость, износостойкость, теплостойкость и вибростойкость.

Прочность – способность детали сопротивляться разрушению или возникновению пластических деформации под действием нагрузки.

Прочность является основным критерием работоспособности большинства деталей машин.

Основным методом оценки прочности деталей машин является сравнение расчетных и допускаемых напряжений:

Также используется метод сравнения расчетных и допустимых коэффициентов запаса прочности:

По характеру нагрузки прочность подразделяется на статическую, усталостную и ударную. По виду деформации – на объемную и поверхностную.

Основы расчета на объемную прочность подробно рассматриваются в курсе сопротивления материалов.

Авто
5,66 млн интересуются