Найти в Дзене
Минобрнауки России

Российские ученые нашли способ эффективной обработки подшипниковой стали

Изделия из подшипниковой стали используются в разных областях промышленности: от производства бытовой техники до станко- и машиностроения. Исследователи из подведомственных Минобрнауки России Уральского федерального университета имени первого Президента России Б. Н. Ельцина (УрФУ) и Института физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН) придумали, как упрочнить поверхности этих востребованных деталей. Специалисты разработали инструмент новой формы для выглаживания закаленной подшипниковой стали, с помощью которого можно добиться значительного улучшения свойств ее поверхностного слоя.

Истосник: ru.freepik.com
Истосник: ru.freepik.com

Методы поверхностной обработки деталей из подшипниковой стали широко используются на производстве для повышения их износостойкости. Выглаживание стали как один из этих методов отличается относительной простотой и эффективностью. Суть выглаживания заключается в пластическом деформировании поверхности детали скользящим по ней инструментом — индентором. Он вдавливается в поверхность вращающейся заготовки детали.

Виктор Кузнецов, профессор кафедры термообработки и физики металлов УрФУ, отмечает, что традиционно индентор изготавливается из алмаза и имеет полусферическую форму, но в последние годы были предложены другие материалы и формы индентора, а также схемы обработки цилиндрических и плоских поверхностей. Сегодня активно развивается передовой метод упрочнения материалов за счет формирования ультрамелкозернистой и нанокристаллической структуры, в частности наноструктурирующее выглаживание поверхностного слоя.

Ученые из ИФПМ СО РАН и УрФУ научно обосновали эффект новой формы индентора — цилиндра вращения из кубического нитрида бора, наклоненный под углом к обрабатываемой поверхности, — и провели комплекс численных и экспериментальных исследований процесса наноструктурирующего выглаживания закаленной подшипниковой стали инновационным инструментом.

«Анализ результатов исследований позволил выявить закономерности изменения и взаимосвязь контактного давления, коэффициента трения и пластической деформации с формируемой микроструктурой, микротвердостью и шероховатостью модифицированного поверхностного слоя», — рассказал Игорь Смолин, заведующий молодежной лабораторией нелинейной механики метаматериалов и многоуровневых систем ИФПМ СО РАН.

Во-первых, плоский цилиндрический индентор имеет высокий ресурс за счет многократного поворота вокруг своей оси. Во-вторых, изменение угла его наклона к обрабатываемой поверхности позволяет управлять контактным давлением сжатия и пластической деформацией сдвига.

Наноструктурирующее выглаживание с измерением действующих на индентор сил с помощью трехкомпонентного динамометра
Наноструктурирующее выглаживание с измерением действующих на индентор сил с помощью трехкомпонентного динамометра

Созданный инструмент внедрен на предприятии «Сенсор» в Кургане для финишной обработки деталей трибосопряжений нефтегазопромыслового оборудования и трубопроводной арматуры. Результаты исследования, выполненного при финансовой поддержке Минобрнауки России, опубликованы в высокорейтинговом международном журнале. Лаборатория нелинейной механики метаматериалов и многоуровневых систем ИФПМ СО РАН, где проводились численные исследования, была создана в рамках нацпроекта «Наука и университеты». Исследования ученых Уральского федерального университета проводятся в рамках программы «Приоритет-2030».