Найти в Дзене
СИГНАЛЫ

ОСНОВНЫЕ ЭТАПЫ РЕШЕНИЯ ЗАДАЧ НА ЭВМ. ПОСТАНОВКАЗАДАЧИ И СПЕЦИФИКАЦИЯ ПРОГРАММЫ.

1.1 Этапы решения задач Переводим решение задачи на язык, понятный машине. Программирование(programming) - теоретическая и практическая деятельность, связанная с созданием программ. Решение задач на компьютере включает в себя следующие основные этапы, часть из которых осуществляется без участия компьютера. 1. Постановка задачи: · сбор информации о задаче; · формулировка условия задачи; · определение конечных целей решения задачи; · определение формы выдачи результатов; · описание данных (их типов, диапазонов величин, структуры и т. п.). Входные данные. Описываются входные данные, указываются пределы, в которых они могут изменяться, значения, которые они не могут принимать, и т. д., а также источник данных т.е. устройство, с помощью которого они должны быть переданы в программу. Выходные Данные. Описываются выходные данные, указывается, в каком виде они должны быть представлены — в числовом, графическом или текстовом, а также указывается устройство отображения этих данных. 2. Анализ и
Оглавление

1.1 Этапы решения задач

Переводим решение задачи на язык, понятный машине.

Программирование(programming) - теоретическая и практическая деятельность, связанная с созданием программ. Решение задач на компьютере включает в себя следующие основные этапы, часть из которых осуществляется без участия компьютера.

1. Постановка задачи:

· сбор информации о задаче;

· формулировка условия задачи;

· определение конечных целей решения задачи;

· определение формы выдачи результатов;

· описание данных (их типов, диапазонов величин, структуры и т. п.).

Входные данные. Описываются входные данные, указываются пределы, в которых они могут изменяться, значения, которые они не могут принимать, и т. д., а также источник данных т.е. устройство, с помощью которого они должны быть переданы в программу.

Выходные Данные. Описываются выходные данные, указывается, в каком виде они должны быть представлены — в числовом, графическом или текстовом, а также указывается устройство отображения этих данных.

2. Анализ и исследование задачи, модели:

· анализ существующих аналогов;

· анализ технических и программных средств;

· разработка математической модели;

· разработка структур данных.

3. Разработка алгоритма:

· выбор метода проектирования алгоритма;

· выбор формы записи алгоритма (блок-схемы, псевдокод и др.);

· выбор тестов и метода тестирования;

· проектирование алгоритма.

4. Программирование:

· выбор языка программирования;

· уточнение способов организации данных;

· запись алгоритма на выбранном языке программирования.

5. Тестирование и отладка:

· синтаксическая отладка;

· отладка семантики и логической структуры;

· тестовые расчеты и анализ результатов тестирования;

· совершенствование программы

Отладка ПС- это деятельность, направленная на обнаружение и исправление ошибок в ПС с использованием процессов выполнения его программ.

Тестирование ПС-это процесс выполнения его программ на некотором наборе данных, для которого заранее известен результат применения или известны правила поведения этих программ.

Указанный набор данных называется тестовым или просто тестом. Таким образом, отладку можно представить в виде многократного повторения трех процессов: тестирования, в результате которого может быть констатировано наличие в ПС ошибки, поиска места ошибки в программах и документации ПС и редактирования программ и документации с целью устранения обнаруженной ошибки. Другими словами:

Отладка = Тестирование + Поиск ошибок + Редактирование.

Успех отладки в значительной степени предопределяет рациональная организация тестирования. При отладке отыскиваются и устраняются, в основном, те ошибки, наличие которых в ПС устанавливается при тестировании.

6. Анализ результатов решения задачи и уточнение в случае необходимости математической модели с повторным выполнением этапов 2-5.

7. Создание документации

Документация классифицируется по своему назначению и может быть разбита на несколько групп: описание применения, руководство пользователя, руководство программиста (самостоятельно).

Описание применения– общая характеристика программного продукта и сферы его применения, требований к базовому программному обеспечению, комплексу технических средств обработки.

Руководство пользователя– детальное описание функциональных

возможностей и технологии работы с программным продуктом для конечного пользователя. Документы данного вида могут оформляться в печатном виде и (или) «встраиваться» в программный комплекс (в последнем случае помощь в виде подсказки вызывается самим пользователем в процессе работы программного комплекса).

8. Сопровождение программы:

· доработка программы для решения конкретных задач;

· составление документации к решенной задаче, к математической модели, к алгоритму, к программе, к набору тестов, к использованию.

После завершения тестирования программного комплекса программное обеспечение сдается в эксплуатацию. В процессе эксплуатации может возникнуть необходимость добавления в программный комплекс новых функций, устранение ошибок, обнаруженных в процессе эксплуатации, и т. д. Данный тип работ с программным комплексом в период его эксплуатации называется сопровождением. Только при решении простейших задач указанные этапы выполняются друг за другом в той последовательности, в которой они были описаны. В общем же случае процесс разработки программного обеспечения требует постоянного возврата к предыдущим этапам и внесения изменений.

1.2 Цель разработки структуры программ

Приступая к разработке каждой программы ПС, следует иметь ввиду, что она, как правило, является большой системой, поэтому мы должны принять меры для ее упрощения. Для этого такую программу разрабатывают по частям, которые называются программными модулями. А сам такой метод разработки программ называют модульным программированием.

Программный модуль - это любой фрагмент описания процесса, оформляемый как самостоятельный программный продукт, пригодный для использования в описаниях процесса. Это означает, что каждый программный модуль программируется, компилируется и отлаживается отдельно от других модулей программы, и тем самым, физически разделен с другими модулями программы. Более того, каждый разработанный программный модуль может включаться в состав разных программ, если выполнены условия его использования, декларированные в документации по этому модулю. Таким образом, программный модуль может рассматриваться и как средство борьбы со сложностью программ, и как средство борьбы с дублированием в программировании (т.е. как средство накопления и многократного использования программистских знаний).

Однако не всякий программный модуль способствует упрощению программы.

Выделить хороший с этой точки зрения модуль является серьезной творческой задачей.

Для оценки приемлемости выделенного модуля используются некоторые критерии:

· размер модуля;

· прочность модуля;

· сцепление с другими модулями;

· рутинность модуля (независимость от предыстории обращений к нему).

Размер модуляизмеряется числом содержащихся в нем операторов (строк).

Модуль не должен быть слишком маленьким или слишком большим. Маленькие модули приводят к громоздкой модульной структуре программы и могут не окупать накладных расходов, связанных с их оформлением. Большие модули неудобны для изучения и изменений, они могут существенно увеличить суммарное время повторных трансляций программы при отладке программы. Обычно рекомендуются программные модули размером от нескольких десятков до нескольких сотен операторов.

Прочность модуля- это мера его внутренних связей. Чем выше прочность модуля, тем больше связей он может спрятать от внешней по отношению к нему части программы и, следовательно, тем больший вклад в упрощение программы он может внести. Для оценки степени прочности модуля используется упорядоченный по степени прочности набор из семи классов модулей.

Самой слабой степенью прочности обладает модуль, прочный по совпадению. Это такой модуль, между элементами которого нет осмысленных связей. Такой модуль может быть выделен, например, при обнаружении в разных местах программы повторения одной и той же последовательности операторов, которая и оформляется в отдельный модуль. Необходимость изменения этой последовательности в одном из контекстов может привести к изменению этого модуля, что может сделать его использование в других контекстах ошибочным. Такой класс программных модулей не рекомендуется для использования.

Функционально прочный модуль- это модуль, выполняющий (реализующий) одну какую-либо определенную функцию. При реализации этой функции такой модуль может использовать и другие модули. Такой класс программных модулей рекомендуется для использования.

Информационно прочный модуль- это модуль, выполняющий (реализующий) несколько операций (функций) над одной и той же структурой данных (информационным объектом), которая считается неизвестной вне этого модуля. Для каждой из этих операций в таком модуле имеется свой вход со своей формой обращения к нему. Такой класс следует рассматривать как класс программных модулей с высшей степенью прочности. Информационно-прочный модуль может реализовывать, например, абстрактный тип данных.

Сцепление модуля- это мера его зависимости по данным от других модулей. Характеризуется способом передачи данных. Чем слабее сцепление модуля с другими модулями, тем сильнее его независимость от других модулей. Для оценки степени сцепления используется упорядоченный набор из нескольких видов сцепления модулей.

Худшим видом сцепления модулей является сцепление по содержимому. Таким является сцепление двух модулей, когда один из них имеет прямые ссылки на содержимое другого модуля (например, на константу, содержащуюся в другом модуле). Такое сцепление модулей недопустимо. Не рекомендуется использовать также сцепление по общей области - это такое сцепление модулей, когда несколько модулей используют одну и ту же область памяти.

Единственным видом сцепления модулей, который рекомендуется для использования современной технологией программирования, является параметрическое сцепление (сцепление по данным) - это случай, когда данные передаются модулю либо при обращении к нему как значения его параметров, либо как результат его обращения к другому модулю для вычисления некоторой функции. Такой вид сцепления модулей реализуется на языках программирования при использовании обращений к процедурам (функциям).

Рутинность модуля - это его независимость от предыстории обращений к нему. Модуль будем называть рутинным, если результат (эффект) обращения к нему зависит только от значений его параметров (и не зависит от предыстории обращений к нему). Модуль будем называть зависящим от предыстории, если результат (эффект) обращения к нему зависит от внутреннего состояния этого модуля, хранящего следы предыдущих обращений к нему. Майерс не рекомендует использовать зависящие от предыстории (непредсказуемые) модули, так как они провоцируют появление в программах хитрых (неуловимых) ошибок. Однако такая рекомендация является неконструктивной, так как во многих случаях именно зависящий от предыстории модуль является лучшей реализаций информационно прочного модуля. Поэтому более приемлема следующая (более осторожная) рекомендация:

· всегда следует использовать рутинный модуль, если это не приводит к плохим (не рекомендуемым) сцеплениям модулей;

· зависящие от предыстории модули следует использовать только в случае, когда это необходимо для обеспечения параметрического сцепления;

· в спецификации зависящего от предыстории модуля должна быть четко сформулирована эта зависимость таким образом, чтобы было возможно прогнозировать поведение (эффект выполнения) данного модуля при разных последующих обращениях к нему.

1.3 Порядок разработки программного модуля

При разработке программного модуля целесообразно придерживаться следующего порядка:

· изучение и проверка спецификации модуля, выбор языка

· программирования;

· выбор алгоритма и структуры данных;

· программирование модуля;

· шлифовка текста модуля;

· проверка модуля;

· компиляция модуля.

Первый шаг разработки программного модуля в значительной степени представляет собой смежный контроль структуры программы снизу: изучая спецификацию модуля, разработчик должен убедиться, что она ему понятна и достаточна для разработки этого модуля. В завершении этого шага выбирается язык программирования: хотя язык программирования может быть уже предопределен для всего ПС, все же в ряде случаев (если система программирования это допускает) может быть выбран другой язык, более подходящий для реализации данного модуля (например, язык ассемблера).

На втором шаге разработки программного модуля необходимо выяснить, не известны ли уже какие-либо алгоритмы для решения поставленной и или близкой к ней задачи. И если найдется подходящий алгоритм, то целесообразно им воспользоваться. Выбор подходящих структур данных, которые будут использоваться при выполнении модулем своих функций, в значительной степени предопределяет логику и качественные показатели разрабатываемого модуля, поэтому его следует рассматривать как весьма ответственное решение.

На третьем шаге осуществляется построение текста модуля на выбранном языке программирования. Обилие всевозможных деталей, которые должны быть учтены при реализации функций, указанных в спецификации модуля, легко могут привести к созданию весьма запутанного текста, содержащего массу ошибок и неточностей. Искать ошибки в таком модуле и вносить в него требуемые изменения может оказаться весьма трудоемкой задачей. Поэтому весьма важно для построения текста модуля пользоваться технологически обоснованной и практически проверенной дисциплиной программирования.

Следующий шаг разработки модуля связан с приведением текста модуля к завершенному виду в соответствии со спецификацией качества ПС. При программировании модуля разработчик основное внимание уделяет правильности реализации функций модуля, оставляя недоработанными комментарии и допуская некоторые нарушения требований к стилю программы. При шлифовке текста модуля он должен отредактировать имеющиеся в тексте комментарии и, возможно, включить в него дополнительные комментарии с целью обеспечить требуемые примитивы качества. С этой же целью производится редактирование текста программы для выполнения стилистических требований.

Шаг проверки модуля представляет собой ручную проверку внутренней логики модуля до начала его отладки (использующей выполнение его на компьютере), реализует общий принцип, сформулированный для обсуждаемой технологии программирования, о необходимости контроля принимаемых решений на каждом этапе разработки ПС.

И, наконец, последний шаг разработки модуля означает завершение проверки модуля (с помощью компилятора) и переход к процессу отладки модуля.

1.4 Структурное программирование

При программировании модуля следует иметь в виду, что программа должна быть понятной не только компьютеру, но и человеку: и разработчик модуля, и лица, проверяющие модуль, и отладчикам, готовящие тесты для отладки модуля, и сопроводители ПС, осуществляющие требуемые изменения модуля, вынуждены будут многократно разбирать логику работы модуля. В современных языках программирования достаточно средств, чтобы запутать эту логику сколь угодно сильно, тем самым, сделать модуль трудно понимаемым для человека и, как следствие этого, сделать его ненадежным или трудно сопровождаемым. Поэтому необходимо принимать меры для выбора подходящих языковых средств и следовать определенной дисциплине программирования. Для этого предлагается строить программу как композицию из нескольких типов управляющих конструкций (структур), которые позволяют сильно повысить понятность работы программы. Программирование с использованием только таких конструкций назвали структурным.

Рис. 1. Структурные конструкции программирования.
Рис. 1. Структурные конструкции программирования.

Основными конструкциями структурного программирования являются: следование, разветвление и повторение. Компонентами этих конструкций являются обобщенные операторы. В качестве обобщенного оператора может быть либо простой оператор используемого языка программирования (операторы присваивания, ввода, вывода, обращения к процедуре), либо фрагмент программы, являющийся композицией основных управляющих конструкций структурного программирования. Существенно, что каждая из этих конструкций имеет по управлению только один вход и один выход. Тем самым, и обобщенный оператор имеет только один вход и один выход