Страшная трагедия унесла несколько тысяч жизней. 26 апреля исполняется 37 лет со дня страшнейшей техногенной катастрофы XX века. Именно в 1986 году на Чернобыльской АЭС (ЧАЭС) произошла авария, приведшая к гибели тысяч людей. В День участников ликвидации последствий радиационных аварий и катастроф, памяти их жертв в России вспоминают ликвидаторов аварии на Чернобыльской АЭС. Памятная дата была установлена постановлением президиума Верховного Совета РФ 22 апреля 1993 года. Первоначально она носила другое название – «День катастрофы на Чернобыльской АЭС – День памяти погибших в радиационных авариях и катастрофах».
Хронология событий 26 апреля 1986 года в Припяти в 01:23 (по мск) на ЧАЭС произошел неконтролируемый рост мощности, который привел к взрывам и разрушению внушительности части 4 энергоблока. В ходе этого в атмосферу было выброшено 8 тонн радиоактивного топлива, в том числе изотопов урана, плутония, йода-131 (период полураспада – 8 дней), цезия-134 (период полураспада – 2 года), цезия-137 (период полураспада – 30 лет), стронция – 90 (период полураспада – 28 лет). На станции начался пожар, длившийся 2 недели, и в воздух все это время продолжали выбрасываться опасные вещества. В результате взрыва была полностью разрушена активная зона и вся верхняя часть здания реактора, сильно пострадали и другие сооружения. Были уничтожены барьеры и системы безопасности, защищающие окружающую среду от радионуклидов, наработанных в облученном топливе. Выброс продуктов ядерного топлива из поврежденного реактора на уровне миллионов кюри в сутки продолжался в течение 10 дней с 26 апреля по 6 мая 1986 года, после чего резко упал (в тысячи раз) и в дальнейшем продолжал уменьшаться. Причины самой масштабной техногенной катастрофы XX века Согласно официальным данным, причиной катастрофы стали грубые нарушения правил эксплуатация АЭС, допущенные персоналом четвертого энергоблока. Существуют по крайней мере два различных подхода к объяснению причин чернобыльской аварии, которые можно назвать официальными, а также несколько альтернативных версий разной степени достоверности. Принцип правильной работы реактора По каналам «сердца» реактора течет вода, замедляющая нейтроны от ядерного топлива до необходимой «рабочей» скорости, потому что на слишком быстрых, незамедленных нейтронах реактор начинает «тормозиться» автоматически. Если же случается авария, и реактор начинает перегреваться, по плану вода из каналов испаряется. Водяной пар хуже воды замедляет нейтроны, то есть при перегреве реактор должен сам себя «тормозить», защищаясь от последующего взрыва.
Государственная комиссия, сформированная в СССР для расследования причин катастрофы, возложила основную ответственность за нее на оперативный персонал и руководство ЧАЭС. МАГАТЭ создало свою консультативную группу, известную как Консультативный комитет по вопросам ядерной безопасности, который действовал на основании материалов, предоставленных советской стороной, и устных высказываний специалистов. Среди них были и консультировали группу физики Александр Калугин и Владимир Демин, а делегацию советских специалистов возглавил Валерий Легасов, первый заместитель директора ИАЭ имени И. В. Курчатова, который в своем отчете 1986 года также в целом поддержал эту точку зрения. Утверждалось, что авария явилась следствием маловероятного совпадения ряда нарушений правил и регламентов эксплуатационным персоналом, а катастрофические последствия приобрела из-за того, что реактор был приведен в нерегламентное состояние.
Грубые нарушения правил эксплуатации АЭС, совершенные ее персоналом, согласно этой точке зрения, заключаются в следующем: проведение эксперимента «любой ценой», несмотря на изменение состояния реактора; вывод из работы исправных технологических защит, которые просто остановили бы реактор еще до того, как он попал в опасный режим; замалчивание масштаба аварии в первые дни руководством ЧАЭС. Однако в 1990 году комиссия Госатомнадзора СССР заново рассмотрела этот вопрос и пришла к заключению, что «начавшаяся из-за действий оперативного персонала Чернобыльская авария приобрела неадекватные им катастрофические масштабы вследствие неудовлетворительной конструкции реактора». Кроме того, комиссия проанализировала действовавшие на момент аварии нормативные документы и не подтвердила некоторые из ранее выдвигавшихся в адрес персонала станции обвинений. Несмотря на широко распространенное ошибочное мнение о том, что авария произошла из-за испытаний выбега турбогенератора, на самом деле испытания лишь облегчили проведение расследования, так как вместе со штатными системами контроля работала еще и внешняя, с высоким временным разрешением. В 1993 году INSAG (Международная консультативная группа по ядерной безопасности) опубликовал дополнительный отчет, обновивший «ту часть доклада INSAG-1, в которой основное внимание уделено причинам аварии», и уделивший большее внимание серьезным проблемам в конструкции реактора. Он основан, главным образом, на данных Госатомнадзора СССР и на докладе «рабочей группы экспертов СССР» (эти два доклада включены в качестве приложений), а также на новых данных, полученных в результате моделирования аварии. В этом отчете многие выводы, сделанные в 1986 году, признаны неверными и пересматриваются «некоторые детали сценария, представленного в INSAG-1», а также изменены некоторые «важные выводы». Согласно документу, наиболее вероятной причиной аварии являлись ошибки проекта и конструкции реактора, эти конструктивные особенности оказали основное влияние на ход аварии и ее последствия. Основными факторами, приведшие к возникновению аварии, INSAG-7 считает следующее: реактор не соответствовал нормам безопасности и имел опасные конструктивные особенности; низкое качество регламента эксплуатации в части обеспечения безопасности; неэффективность режима регулирования и надзора за безопасностью в ядерной энергетике, общая недостаточность культуры безопасности в ядерных вопросах как на национальном, так и на местном уровне; отсутствовал эффективный обмен информацией по безопасности как между операторами, так и между операторами и проектировщиками, персонал не обладал достаточным пониманием особенностей станции, влияющих на безопасность; персонал допустил ряд ошибок и нарушил существующие инструкции и программу испытаний. В целом INSAG-7 достаточно осторожно сформулировал свои выводы о причинах аварии. Так, например, при оценке различных сценариев INSAG отмечает, что «в большинстве аналитических исследований тяжесть аварии связывается с недостатками конструкции стержней системы управления и защиты (СУЗ) в сочетании с физическими проектными характеристиками», и, не высказывая при этом своего мнения, говорит про «другие ловушки для эксплуатационного персонала. Любая из них могла бы в равной мере вызвать событие, инициирующее такую или почти идентичную аварию», например, такое событие, как «срыв или кавитация насосов» или «разрушение топливных каналов». Затем задается риторический вопрос: «Имеет ли в действительности значение то, какой именно недостаток явился реальной причиной, если любой из них мог потенциально явиться определяющим фактором?».
При изложении взглядов на конструкцию реактора INSAG признает «наиболее вероятным окончательным вызвавшим аварию событием» «ввод стержней СУЗ в критический момент испытаний» и замечает, что «в этом случае авария явилась бы результатом применения сомнительных регламентов и процедур, которые привели к проявлению и сочетанию двух серьезных проектных дефектов конструкции стержней и положительной обратной связи по реактивности». Далее говорится: «Вряд ли фактически имеет значение то, явился ли положительный выбег реактивности при аварийном останове последним событием, вызвавшим разрушение реактора. Важно лишь то, что такой недостаток существовал и он мог явиться причиной аварии». INSAG вообще предпочитает говорить не о причинах, а о факторах, способствовавших развитию аварии. «Достоверно неизвестно, с чего начался скачок мощности, приведший к разрушению реактора Чернобыльской АЭС. Определенная положительная реактивность, по-видимому, была внесена в результате роста паросодержания при падении расхода теплоносителя. Внесение дополнительной положительной реактивности в результате погружения полностью выведенных стержней СУЗ в ходе испытаний явилось, вероятно, решающим приведшим к аварии фактором», – формулируется в выводых причина аварии. Ниже рассматриваются технические аспекты аварии, обусловленные в основном имевшими место недостатками реакторов РБМК, а также нарушениями и ошибками, допущенными персоналом станции при проведении последнего для четвертого блока ЧАЭС испытания. Технические аспекты аварии Недостатки реактора. Реактор РБМК-1000 обладал рядом конструктивных недостатков и по состоянию на апрель 1986 года имел десятки нарушений и отступлений от действующих правил ядерной безопасности, на любом из реакторов типа РБМК (на апрель 1986 года в эксплуатации было 15 реакторов на 5 станциях), о чем конструкторам было известно за годы до катастрофы. За месяц до трагедии в газете «Літературна Україна» была опубликована статья Любови Ковалевской «Не частное дело», описывающая ошибки при строительстве третьей очереди ЧАЭС. Несмотря на известные проблемы до аварии не предпринимались меры по повышению безопасности РБМК. К тому же действовавший на момент аварии регламент допускал режимы работы, при которых могла произойти подобная авария без вмешательства персонала при вполне вероятной ситуации. Два из этих недостатков имели непосредственное отношение к причинам аварии. Это положительная обратная связь между мощностью и реактивностью, возникавшая при некоторых режимах эксплуатации реактора, и наличие так называемого концевого эффекта, проявлявшегося при определенных условиях эксплуатации. Эти недостатки не были должным образом отражены в проектной и эксплуатационной документации, что во многом способствовало ошибочным действиям эксплуатационного персонала и созданию условий для аварии. После аварии в срочном порядке (первичные – уже в мае 1986 года) были осуществлены мероприятия по устранению этих недостатков. Ошибки операторов. Первоначально утверждалось, что в процессе подготовки и проведения эксперимента эксплуатационным персоналом был допущен ряд нарушений и ошибок, и что именно эти действия и стали главной причиной аварии. Однако затем эта точка зрения была пересмотрена и выяснилось, что большинство из указанных действий нарушениями не являлись, либо не повлияли на развитие аварии. Таким образом, длительная работа реактора на мощности ниже 700 МВт не была запрещена действовавшим на тот момент регламентом, как это утверждалось ранее, хотя и являлась ошибкой эксплуатации и фактором, способствовавшим аварии. Кроме того, это было отклонением от утвержденной программы испытаний. Точно так же включение в работу всех восьми главных циркуляционных насосов (ГЦН) не было запрещено эксплуатационной документацией. Нарушением регламента было лишь превышение расхода через ГЦН выше предельного значения, но кавитации (которая рассматривалась как одна из причин аварии) это не вызвало. Отключение системы аварийного охлаждения реактора (САОР) допускалось, при условии проведения необходимых согласований. Система была заблокирована в соответствии с утвержденной программой испытаний, и необходимое разрешение от главного инженера станции было получено. Это не повлияло на развитие аварии: к тому моменту, когда САОР могла бы сработать, активная зона уже была разрушена. Блокировка защиты реактора по сигналу остановки двух турбогенераторов не только допускалась, но, наоборот, предписывалась при разгрузке энергоблока перед его остановкой. Таким образом, перечисленные действия не были нарушением регламента эксплуатации; более того, высказываются обоснованные сомнения в том, что они как-то повлияли на возникновение аварии в тех условиях, которые сложились до их выполнения. Также признано, что «операции со значениями уставок и отключением технологических защит и блокировок не явились причиной аварии, не влияли на ее масштаб. Эти действия не имели никакого отношения к аварийным защитам собственно реактора (по уровню мощности, по скорости ее роста), которые персоналом не выводились из работы». При этом нарушением регламента было только непереключение уставки защиты по уровню воды в барабан-сепараторе (с −1100 на −600 мм), но не изменение уставки по давлению пара (с 55 на 50 кгс/см²). Нарушением регламента, существенно повлиявшим на возникновение и протекание аварии, была, несомненно, работа реактора с малым оперативным запасом реактивности (ОЗР). В то же время не доказано, что авария не могла бы произойти без этого нарушения. Вне зависимости от того, какие именно нарушения регламента допустил эксплуатационный персонал, и как они повлияли на возникновение и развитие аварии, персонал поддерживал работу реактора в опасном режиме. Работа на малом уровне мощности с повышенным расходом теплоносителя и при малом ОЗР была ошибкой независимо от того, как эти режимы были представлены в регламенте эксплуатации и независимо от наличия или отсутствия ошибок в конструкции реактора. Роль оперативного запаса реактивности. Оперативному запасу реактивности (ОЗР) при анализе развития аварии на ЧАЭС уделяется большое внимание. ОЗР – это положительная реактивность, которую имел бы реактор при полностью извлеченных стержнях СУЗ. В реакторе, работающем на постоянном уровне мощности, эта реактивность всегда скомпенсирована (до нуля) отрицательной реактивностью, вносимой стержнями СУЗ. Большая величина ОЗР означает «увеличенную» долю избыточного ядерного топлива (урана-235), расходуемого на компенсацию этой отрицательной реактивности, вместо того чтобы этот уран-235 тоже использовался для деления и производства энергии.
Кроме того, увеличенное значение ОЗР несет и определенную потенциальную опасность, поскольку означает достаточно высокое значение реактивности, которая может быть внесена в реактор из-за ошибочного извлечения стержней СУЗ. В то же время на реакторах РБМК низкое значение ОЗР фатальным образом влияло на безопасность реактора. Для поддержания его постоянной мощности (то есть нулевой реактивности) при малом ОЗР необходимо почти полностью извлечь из активной зоны управляющие стержни. Такая конфигурация (с извлеченными стержнями) на РБМК была опасна по нескольким причинам: усиливалась пространственная неустойчивость нейтронного поля, и затруднялось обеспечение однородности энерговыделения по активной зоне; увеличивался положительный паровой коэффициент реактивности; существенно уменьшалась эффективность аварийной защиты, и в первые секунды после ее срабатывания, из-за «концевого эффекта» стержней СУЗ, мощность могла даже увеличиваться, вместо того чтобы снижаться. Персонал станции, по-видимому, знал только о первой из этих причин; ни об опасном увеличении парового коэффициента, ни о концевом эффекте в действовавших в то время документах ничего не говорилось. Сотрудникам не было известно об истинных опасностях, связанных с работой при низком запасе реактивности. Между проявлением концевого эффекта и оперативным запасом реактивности нет жесткой связи. Угроза ядерной опасности возникает, когда большое количество стержней СУЗ находится в крайних верхних положениях. Это возможно, только если ОЗР мал, однако при одном и том же ОЗР можно расположить стержни по-разному – так что различное количество стержней окажется в опасном положении. В регламенте отсутствовали ограничения на максимальное количество полностью извлеченных стержней. ОЗР не упоминался в числе параметров, важных для безопасности, технологический регламент не заострял внимание персонала на том, что ОЗР есть важнейший параметр, от соблюдения которого зависит эффективность действия аварийной защиты. Кроме того, проектом не были предусмотрены адекватные средства для измерения ОЗР. Несмотря на огромную важность этого параметра, на пульте не было индикатора, который бы непрерывно его отображал. Обычно оператор получал последнее значение в распечатке результатов расчета на станционной ЭВМ, два раза в час, либо давал задание на расчет текущего значения, с доставкой через несколько минут. Таким образом, ОЗР не может рассматриваться как оперативно управляемый параметр, тем более что погрешность его оценки зависит от формы нейтронного поля. Версии причин аварии Единой версии причин аварии, с которой было бы согласно все экспертное сообщество специалистов в области реакторной физики и техники, не существует. Обстоятельства расследования аварии были таковы, что и тогда, и теперь судить о ее причинах и следствиях приходится специалистам, чьи организации прямо или косвенно несут часть ответственности за нее. В этой ситуации радикальное расхождение во мнениях вполне естественно. Также вполне естественно, что в этих условиях помимо признанных «авторитетных» версий появилось множество маргинальных, основанных больше на домыслах, нежели на фактах. Единым в авторитетных версиях является только общее представление о сценарии протекания аварии. Ее основу составило неконтролируемое возрастание мощности реактора. Разрушающая фаза аварии началась с того, что от перегрева ядерного топлива разрушились тепловыделяющие элементы (твэлы) в определенной области в нижней части активной зоны реактора.
Это привело к разрушению оболочек нескольких каналов, в которых находятся эти твэлы, и пар под давлением около 7 МПа получил выход в реакторное пространство, в котором нормально поддерживается атмосферное давление (0,1 МПа). Давление в реакторном пространстве резко возросло, что вызвало дальнейшие разрушения уже реактора в целом, в частности отрыв верхней защитной плиты (так называемой «схемы Е») со всеми закрепленными в ней каналами. Герметичность корпуса (обечайки) реактора и вместе с ним контура циркуляции теплоносителя (КМПЦ) была нарушена, и произошло обезвоживание активной зоны реактора. При наличии положительного парового (пустотного) эффекта реактивности 4-5 β, это привело к разгону реактора на мгновенных нейтронах и наблюдаемым масштабным разрушениям. Версии принципиально расходятся по вопросу о том, какие именно физические процессы запустили этот сценарий и что явилось исходным событием аварии: произошел ли первоначальный перегрев и разрушение твэлов из-за резкого возрастания мощности реактора вследствие появления в нем большой положительной реактивности или наоборот, появление положительной реактивности – это следствие разрушения твэлов, которое произошло по какой-либо другой причине? было ли нажатие кнопки аварийной защиты АЗ-5 непосредственно перед неконтролируемым возрастанием мощности исходным событием аварии или нажатие кнопки АЗ-5 не имеет никакого отношения к аварии? И что тогда следует считать исходным событием: начало испытаний выбега или незаглушение реактора при провале по мощности за 50 минут до взрыва? Помимо этих принципиальных различий версии могут расходиться в некоторых деталях сценария протекания аварии, ее заключительной фазы (взрыв реактора). Из основных признаваемых экспертным сообществом версий аварии более или менее серьезно рассмотрены только те, в которых аварийный процесс начинается с быстрого неконтролируемого роста мощности с последующим разрушением твэлов. Наиболее вероятной считается версия, согласно которой «исходным событием аварии явилось нажатие кнопки АЗ-5 в условиях, которые сложились в реакторе РБМК-1000 при низкой его мощности и извлечении из реактора стержней РР сверх допустимого количества». Из-за неудачной конструкции стержней системы управления и защиты (СУЗ) (концевого эффекта) при паровом коэффициенте реактивности величиной +5β и в том состоянии, в котором находился реактор, аварийная защита, вместо того чтобы заглушить реактор, запускает аварийный процесс согласно вышеописанному сценарию. Расчеты, выполненные в разное время разными группами исследователей, показывают возможность такого развития событий.
Это также косвенно подтверждается тем, что в случае «разгона» реактора на мгновенных нейтронах из-за «запоздалого» нажатия СИУРом кнопки АЗ-5, сигнал на его аварийную остановку был бы сформирован автоматически: по превышению периода удвоения мощности, превышению максимального уровня мощности и т. п. Такие события обязательно должны были предшествовать взрыву реактора, и реакция автоматики защиты была бы обязательной и непременно опередила бы реакцию оператора. Однако общепризнано, что первый сигнал аварийной защиты был дан кнопкой на пульте оператора АЗ-5, которая используется для глушения реактора в любых аварийных и нормальных условиях. В частности, именно с помощью нее был остановлен 3-й энергоблок ЧАЭС в 2000 году. Записи системы контроля и показания свидетелей подтверждают эту версию. Однако не все с этим согласны: есть расчеты, выполненные в НИКИЭТ (одна из организаций-создателей РБМК), которые такую возможность отрицают. Главным конструктором высказываются другие версии начального неконтролируемого роста мощности, в которых причиной этого является не работа СУЗ реактора, а условия во внешнем контуре циркуляции КМПЦ, созданные действиями эксплуатационного персонала. Исходными событиями аварии в этом случае могли бы быть: кавитация главного циркуляционного насоса (ГЦН), вызвавшая отключение ГЦН и интенсификацию процесса парообразования с введением положительной реактивности; кавитация на запорно-регулирующих клапанах (ЗРК) каналов реактора, вызвавшая поступление дополнительного пара в активную зону с введением положительной реактивности; отключение ГЦН собственными защитами, вызвавшее интенсификацию процесса парообразования с введением положительной реактивности. Версии о кавитации основываются на расчетных исследованиях, выполненных в НИКИЭТ, но, по собственному признанию авторов этих расчетов, «детальные исследования кавитационных явлений не выполнялись». Версия отключения ГЦН как исходного события аварии не подтверждается зарегистрированными данными системы контроля. Кроме того, все три версии подвергаются критике с точки зрения того, что речь идет по существу не об исходном событии аварии, а о факторах, способствующих ее возникновению. Нет количественного подтверждения версий расчетами, моделирующими произошедшую аварию. Существуют также различные версии, касающиеся заключительной фазы аварии – собственно взрыва реактора: Химический взрыв. Высказывались предположения, что взрыв, разрушивший реактор, имел химическую природу, то есть это был взрыв водорода, который образовался в реакторе при высокой температуре в результате пароциркониевой реакции и ряда других процессов. Паровой взрыв. Существует версия, что взрыв был исключительно паровым. Согласно ей, все разрушения вызвал поток пара, выбросив из шахты значительную часть графита и топлива. Пиротехнические эффекты в виде «фейерверка вылетающих раскаленных и горящих фрагментов», которые наблюдали очевидцы, – результат «возникновения пароциркониевой и других химических экзотермических реакций». Версия ядерного взрыва. По версии, предложенной ядерным физиком, ликвидатором последствий аварии Константином Чечеровым, взрыв, имевший ядерную природу, произошел не в шахте реактора, а в пространстве реакторного зала, куда активная зона вместе с крышкой реактора была выброшена паром, вырывающимся из разорванных каналов. Эта версия хорошо согласуется с характером разрушения строительных конструкций реакторного здания и отсутствием заметных разрушений в шахте реактора, она включена главным конструктором в его версию аварии. Первоначально версия была предложена для того, чтобы объяснить отсутствие топлива в шахте реактора, подреакторных и других помещениях (присутствие топлива оценивалось как не более 10 %). Однако последующие исследования и оценки дают основание считать, что внутри построенного над разрушенным блоком «саркофага» находится около 95 % топлива. Шведские ученые предположили, что во время аварии на Чернобыльской АЭС в действительности произошел ядерный взрыв мощностью около 75 т в тротиловом эквиваленте. Для этого они проанализировали концентрации изотопов 133Xe и 133mXe в образцах череповецкой фабрики по сжижению воздуха, а также смоделировали погодные условия после катастрофы, используя недавно опубликованные подробные данные за 1986 год. Статья опубликована в Nuclear Technology. «Мы предполагаем, что ядерные взрывы, вызванные тепловыми нейтронами в нижней части топливных каналов, породили мощные струи из расплавленного топлива и материи самого реактора, устремившиеся вверх. Они пробили 350-килограммовые крышки каналов, прошили крышу реактора и поднялись на высоту в 3 км, где их подхватил ветер и донес до Череповца. Взрыв пара, разорвавший корпус реактора, случился через 2,7 секунды», – заявил Ларс-Эрик де Гир из Агентства оборонных исследований Швеции. Альтернативные версии Причины чернобыльской аварии невозможно понять, не постигая тонкостей физики ядерных реакторов и технологии работы энергоблоков АЭС с РБМК-1000. В то же время первичные данные об аварии не были известны широкому кругу специалистов. В этих условиях помимо версий, признанных экспертным сообществом, появилось много других. В первую очередь, это версии, предложенные специалистами из других областей науки и техники. Во всех этих гипотезах авария предстает результатом действия совершенно других физических процессов, чем те, которые лежат в основе работы АЭС, но хорошо знакомых авторам по их профессиональной деятельности. Локальное землетрясение. Широкую известность получила версия, выдвинутая сотрудником Института физики Земли РАН Евгением Барковским. Она объясняет аварию локальным землетрясением. Основанием для такого предположения является сейсмический толчок, зафиксированный примерно в момент аварии в районе расположения Чернобыльской АЭС. Сторонники этой версии утверждают, что толчок был зарегистрирован до, а не в момент взрыва (это утверждение оспаривается ), а сильная вибрация, предшествовавшая катастрофе, могла быть вызвана не процессами внутри реактора, а землетрясением. Кроме того, как установили геофизики, сам 4-й энергоблок стоит на узле тектонического разлома земных плит. Причиной того, что соседний третий блок не пострадал, считается тот факт, что испытания проводились только на 4-м энергоблоке. Сотрудники АЭС, находившиеся на других блоках, никаких вибраций не почувствовали. Умышленное преступление. Существуют и конспирологические версии аварии, которые намекают на умышленный факт действий, приведших к аварии. Наиболее популярная версия – признание взрыва на Чернобыльской АЭС диверсией или даже террористическим актом, факт которого сокрыли власти. Среди способов диверсии называются взрывчатка, подложенная под реактор, следы которой якобы были обнаружены на поверхности расплавов топливных масс; вставленные в активную зону специальные твэлы из высокообогащенного (оружейного) урана ; диверсия с применением пучкового оружия, установленного на искусственном спутнике Земли, либо так называемого дистанционного геотектонического оружия. Подлог данных. Сотрудник Института проблем безопасности АЭС Академии наук Украины Борис Горбачев предложил версию, которая представляет собою вольное публицистическое изложение общепринятого сценария аварии с обвинениями экспертов, расследовавших аварию, и персонала АЭС в совершении подлога в отношении первичных исходных данных. По версии Горбачева, взрыв произошел из-за того, что операторы при подъеме мощности после ее провала (в 00:28) извлекли слишком много управляющих стержней, делая это произвольно и бесконтрольно вплоть до момента взрыва и не обращая внимания на растущую мощность. На основании сделанных допущений автор выстроил новую хронологию событий, однако она противоречит надежно зарегистрированным данным и физике процессов, протекающих в ядерном реакторе. Ликвидация последствий 27 апреля был эвакуирован город Припять (47 500 тысяч человек), а в последующие дни – население 10-километровой зоны вокруг ЧАЭС. По данным Института проблем безопасного развития атомной энергетики РАН, всего в течение мая 1986 года из 188 населенных пунктов в 30-километровой зоне отчуждения вокруг станции, которая была установлена после катастрофы, были отселены около 116 тысяч человек.
Выброс продуктов деления ядерного топлива из поврежденного реактора продолжался в течение 10 дней с 26 апреля по 6 мая 1986 года, за это время суммарный выброс радиоактивных материалов в окружающую среду составил около 14 эксабеккерелей (порядка 380 млн кюри).
В ликвидации последствий аварии с 1986 по 1990 гг, эвакуации населения были привлечены более 800 тысяч специалистов из разных областей, рабочих, военнослужащих со всех республик Советского Союза. Первыми на место прибыли пожарные – 69 человек и 19 единиц техники. Ценой своей жизни герои отвели беду и спасли тысячи человеческих жизней. Для ликвидации последствий катастрофы была создана правительственная комиссия. В «зону отчуждения» ( 30-ти км зона вокруг Чернобыльской АЭС) стали прибывать специалисты, командированные для проведения работ на аварийном блоке и вокруг него, а также воинские части, как регулярные, так и составленные из срочно призванных резервистов. Их всех позднее стали называть «ликвидаторами». В первые дни упор был направлен на снижение радиоактивных выбросов из разрушенного реактора и предотвращение еще более серьезных последствий. Так, в течение месяца шахтеры вырыли 136-метровый тоннель под реактор.
Для предотвращения заражения грунтовых вод, в том числе реки Днепр, в почве вокруг станции была сооружена защитная стена, глубина которой местами доходила до 30 м. Также в течение 10 дней инженерные войска отсыпали дамбы на реке Припять, впадающую в Днепр. Шахту взорвавшегося реактора ЧАЭС засыпали с неба. Вертолеты, которые не могли вплотную подобраться к воздушному пространству над самим сооружением, сбрасывали карбид бора, свинца и доломита, а после завершения активной стадии аварии – латексом, каучуком и другими пылепоглощающими растворами. Всего к концу июня 1986 года было сброшено около 11 400 тонн сухих и жидких материалов.
Сначала над 4 энергоблоком возвели защитное сооружение – «Укрытие», а затем второе («конфайнмент» – от англ. confinement – «удержание») – «Укрытие - 2», которое было введено в эксплуатацию в июле 2019 года. Арка представляет собой стальную 110-метровую конструкцию весом более 36 тыс тонн. По этим параметрам она признана крупнейшей подвижной наземной постройкой. Первый саркофаг установили после начального, более острого, этапа по локализации последствий катастрофы. В период с июля по ноябрь 1986 года была сооружена бетонная конструкция высотой более 50 м т внешними размерами 200 м на 200 м , укрывшая 4 энергоблок Чернобыльской АЭС. Это смогло предотвратить дальнейшие выбросы радиоактивных элементов. Основная часть работ была выполнена в 1986-1987 годах, на разных этапах ликвидации последствий аварии были задействованы: от 16 до 30 тысяч человек из разных ведомств для дезактивационных работ; более 210 воинских частей и подразделений общей численностью 340 тысяч военнослужащих, из них более 90 тысяч в самый острый период с апреля по декабрь 1986 года; 18,5 тысяч работников органов внутренних дел. Общее количество «ликвидаторов» (включая последующие годы) составило более 500 тысяч человек со всего бывшего СССР.
В 2011 году Верховная Рада утвердила программу вывода из эксплуатации Чернобыльской АЭС. Согласно программе, ЧАЭС будет полностью ликвидирована к 2065 году. На данный момент станция не работает. Катастрофа на ЧАЭС привела к радиоактивному загрязнению территорий многих стран Северного полушария. Больше всего пострадали Россия, Белоруссия и Украина. В частности, в РФ было загрязнено почти 60 тыс кв км территорий. Также в стране радиационному загрязнению цезием-137 подверглись 19 регионов. Наиболее пострадавшие – Брянская, Калужская, Тульская и Орловская области. По последствиям, масштабам ущерба, нанесенного людям и окружающей среде, катастрофа в Припяти стала крупнейшей в ХХ веке. Почти 8,4 млн человек в России, Белоруссии и Украине подверглись воздействию радиоактивного излучения. У 134 работников станции и пожарных была выявлена острая лучевая болезнь. 28 из них умерли в первые месяцы после аварии. Как бы ни звучало, но больше всех повезло 3 погибшим в момент взрыва на 4 энергоблоке.