В чем заключается важность нейронных сетей?
Для чего используются нейронные сети?
Нейронные сети распространены во множестве отраслей. В их числе:
- Диагностика с помощью классификации медицинских изображений
- Целевой маркетинг с помощью фильтрации социальных сетей и анализа поведенческих данных
- Финансовые прогнозы с помощью обработки исторических данных финансовых инструментов
- Прогнозирование электрической нагрузки и потребности в энергии
- Контроль соответствия требованиям и качества
- Определение химических соединений
Ниже представлены четыре важнейших задачи, которые помогают решить нейронные сети.
Распознавание речи
Нейронные сети могут анализировать человеческую речь независимо от ее речевых моделей, высоты, тона, языка и акцента. Виртуальные помощники, такие как Amazon Alexa и программное обеспечение для автоматической транскрипции, используют распознавание речи для выполнения следующих задач:
- Помощь операторам колл-центра и автоматическая классификация звонков
- Преобразование клинических рекомендаций в документацию в режиме реального времени
- Точные субтитры к видео и записям совещаний для более широкого охвата контента
Обработка естественного языка
Обработка естественного языка (NLP) — это способность обрабатывать естественный, созданный человеком текст. Нейронные сети помогают компьютерам извлекать информацию и смысл из текстовых данных и документов. NLP имеет несколько сфер применения, в том числе:
- Автоматизированные виртуальные агенты и чат-боты
- Автоматическая организация и классификация записанных данных
- Бизнес-аналитика длинных документов: например, электронных писем и форм
- Индексация ключевых фраз, указывающих на настроение: например, положительных и отрицательных комментариев в социальных сетях
- Обобщение документов и генерация статей по заданной теме
Сервисы рекомендаций
Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт.
Как работают нейронные сети?
Архитектура базовой нейронной сети
Базовая нейронная сеть содержит три слоя взаимосвязанных искусственных нейронов:
Входной слой
Информация из внешнего мира поступает в искусственную нейронную сеть из входного слоя. Входные узлы обрабатывают данные, анализируют или классифицируют их и передают на следующий слой.
Скрытый слой
Скрытые слои получают входные данные от входного слоя или других скрытых слоев. Искусственные нейронные сети могут иметь большое количество скрытых слоев. Каждый скрытый слой анализирует выходные данные предыдущего слоя, обрабатывает их и передает на следующий слой.
Выходной слой
Выходной слой дает окончательный результат обработки всех данных искусственной нейронной сетью. Он может иметь один или несколько узлов. Например, при решении задачи двоичной классификации (да/нет) выходной слой будет иметь один выходной узел, который даст результат «1» или «0». Однако в случае множественной классификации выходной слой может состоять из более чем одного выходного узла.
Архитектура глубокой нейронной сети
Глубокие нейронные сети или сети глубокого обучения имеют несколько скрытых слоев с миллионами связанных друг с другом искусственных нейронов. Число, называемое весом, указывает на связи одного узла с другими. Вес является положительным числом, если один узел возбуждает другой, или отрицательным, если один узел подавляет другой. Узлы с более высокими значениями веса имеют большее влияние на другие узлы.
Теоретически глубокие нейронные сети могут сопоставлять любой тип ввода с любым типом вывода. Однако стоит учитывать, что им требуется гораздо более сложное обучение, чем другим методам машинного обучения. Таким узлам нужны миллионы примеров обучающих данных, а не сотни или тысячи, как в случае с простыми сетями.
Какие типы нейронных сетей существуют?
Искусственные нейронные сети можно классифицировать по тому, как данные передаются от входного узла к выходному узлу. Ниже приведены несколько примеров.
Нейронные сети прямого распространения
Нейронные сети прямого распространения обрабатывают данные в одном направлении, от входного узла к выходному узлу. Каждый узел одного слоя связан с каждым узлом следующего слоя. Нейронные сети прямого распространения используют процесс обратной связи для улучшения прогнозов с течением времени.
Алгоритм обратного распространения
Искусственные нейронные сети постоянно обучаются, используя корректирующие циклы обратной связи для улучшения своей прогностической аналитики. Проще говоря, речь идет о данных, протекающих от входного узла к выходному узлу по множеству различных путей в нейронной сети. Правильным является только один путь, который сопоставляет входной узел с правильным выходным узлом. Чтобы найти этот путь, нейронная сеть использует петлю обратной связи, которая работает следующим образом:
- Каждый узел делает предположение о следующем узле на пути.
- Он проверяет, является ли предположение правильным. Узлы присваивают более высокие значения веса путям, которые приводят к более правильным предположениям, и более низкие значения веса путям узлов, которые приводят к неправильным предположениям.
- Для следующей точки данных узлы делают новый прогноз, используя пути с более высоким весом, а затем повторяют шаг 1.
Сверточные нейронные сети
Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.
Надеюсь статья оказалась вам полезна!