Роботизированное устройство не сможет функционировать без поступления необходимой информации об окружающем расположении объектов, с которыми оно должно взаимодействовать. Источниками такой информации служат разнообразные датчики, передающие данные на контроллер — «мозг» — робота, который обрабатывает поступающие сигналы и «принимает решение» о дальнейших действиях.
Рассмотрим датчики, применяемые в некоторых известных детских конструкторах для измерения различных физических величин.
Электронные помощники для платформы LEGO Mindstorms Education EV3
В набор одной из самых популярных конструкторских платформ входит 5 сенсоров, поставляющих необходимые данные:
· Светочувствительный датчик — Education EV3 Color Sensor.
· Два тактильных датчика (касания) — Education EV3 Touch Sensor.
· Ультразвуковой датчик расстояния — Education Ultrasonic Sensor.
· Гироскоп — Education EV3 Gyro Sensor.
Инструмент, дающий «зрение» системе
Первый по списку сенсор дает возможность различать наличие или отсутствие света, а также, 7 оттенков цветов (белый, черный, синий, красный, зеленый, коричневый, желтый). Постоянный опрос происходит с частотой в 1000Гц.
Устройство действует как два компонента в одном — датчик освещенности (фоторезистор) и трехцветный, излучающий красный, зеленый и синий свет светодиод. Оно полностью совместимо с программным обеспечением EV3.
В функцию сенсора входит измерение частоты различных волн, отражающихся от поверхности исследуемого предмета. Для этих целей объект освещается тремя цветами с последующим измерением частоты отраженного света, благодаря чему формируется понятие о цвете предмета.
Данные датчики могут найти применение в сфере сортировки изделий, переработки и других отраслях промышленности.
Чувствительные датчики
Два следующих компонента платформы LEGO Mindstorms Education — аналоговые датчики, определяющие наличие касания на специальную кнопку, встроенную в прибор, и силу нажатия. В новом исполнении устройства могут подсчитывать количество тактильных срабатываний.
Аналоговые датчики выдают постоянный усиленный токовый сигнал, который преобразуется из измеряемой физической величины. В датчике используются конденсаторы, емкость которых изменяется при соприкосновении с препятствием, что регистрируется электронной схемой, посылающей сигнал в процессор платформы.
У данного вида сенсоров могут использоваться и пьезоэлектрические материалы, выдающие при деформации небольшой электрический ток или изменяющие сопротивление.
Спектр использования сенсоров очень широк: от поиска и обнаружения предметов, до нахождения роботом выхода из различной незнакомой обстановки, в том числе из лабиринта.
Датчик, измеряющий расстояние
Третий датчик, которым оснащена платформа LEGO, является ультразвуковым устройством, измеряющим расстояние до объекта при помощи отраженных ультразвуковых волн. Данное устройство имеет функцию улавливания сигнала датчиков других роботов (режим сонара), что дает платформе возможность «слуха».
Сенсор может измерять расстояние до предмета: от 0,03м до 2,5м с точностью +-1см. Частота опроса сигналом: 1000Гц при дискретности шкалы измерения в 1 мм. Имеется LED подсветка, помогающая определить режим работы датчика.
Принцип действия основан на измерении электронной схемой промежутка времени между отправленным ультразвуковым сигналом и приемным. Несложно вычислить расстояние, если известно время и скорость распространения звука в окружающей среде.
Сфера применения ультразвуковых датчиков многообразна. Их используют в машиностроении, сельском хозяйстве, в любых автоматизированных производствах, где необходимо четкое измерение расстояния до предмета.
Датчики для определения положения в пространстве
Последним чувствительным элементом в линейке датчиков конструктора LEGO Mindstorms Education EV3 является гироскоп. Для того чтобы робот мог правильно передвигаться, не падая, и совершать поступательные и вращательные движения, в конструкторе предусмотрен гироскопический датчик. С его помощью робот может балансировать, например, на 2 колесах.
Прибор измеряет изменение угла вращения на закрепленной конструкции. Сверху нанесены 2 красные стрелки, показывающие рабочую плоскость датчика.
Частота опроса датчика: 1000Гц. Погрешность: +-3° на 90° измеряемого угла поворота. Максимальный определяемый угол в режиме гироскопа: 440°.
Гироскоп состоит из поплавка, вращающегося по вертикальной оси относительно трех систем координат (3 внутренние круглые рамки, независимо вращающиеся друг от друга). При изменении направления движения поплавка относительно рамок датчик передает в контроллер робота данные о пространственном положении конструкции относительно силы тяжести.
Датчик присутствует только в комплекте образовательных конструкторов, но его можно дополнительно купить отдельно.
Датчики, используемые в конструкторах HUNA
Данный производитель имеет разнообразную по возрастной категории линейку конструкторов. Среди них выделяются наборы Class 3 Full Kit и MRT3 (1+2+3+4). Это платформы не ограничены возрастными рамками пользователя (от младших школьников до старшеклассников). Они включают в себя набор сенсоров:
· Два датчика касания (как в конструкторе LEGO).
· Датчик освещенности (распознает наличие света).
· Три инфракрасных датчика (имеют способность различать границы предметов, темную и светлую стороны).
· Микрофон (улавливает звуки).
По сравнению с конструктором LEGO Mindstorms Education EV3, отсутствует функция различия цветов, гироскоп и ультразвуковой измеритель расстояния.
Сенсоры платформы VEX IQ
Конструкторы американского производителя VEX Robotics очень популярны в мире и принимают участие в соревнованиях по робототехнике. В состав набора «Супер Кит» входит 7 датчиков:
· Гироскоп.
· Датчик цвета и освещенности.
· Два датчика касания.
· Ультразвуковой сенсор.
· Два светодиодных устройства с тактильными датчиками.
Какие бывают датчики для роботов?
Датчики играют в робототехнике одну из важнейших ролей. При помощи различных сенсоров робот ощущает окружающую среду и может ориентироваться в ней. По аналогии с живым организмом — это органы чувств. Даже обычный самодельный робот не может полноценно функционировать без простейших датчиков. В этой статье мы подробно рассмотрим все виды датчиков, которые можно установить на робота, и полезность их применения.
РЕКЛАМА
Тактильные сенсоры
Тактильные сенсоры наделяют робота возможностью реагировать на контакты (силы), возникающие между ним и другими объектами в рабочей зоне. Обычно этими датчиками оснащают промышленные манипуляторы, а также роботов с медицинским применением. Машины, оснащенные тактильными сенсорами, эффективно справляются с операциями сборки и контроля, то есть функциями, требующими учитывать тонкости работы.
Разрабатывая современных гуманоидных роботов, производители оснащают их этими сенсорами, чтобы сделать машины ещё более «одушевленными», способными воспринимать информацию об окружающем мире буквально на ощупь.
Оптические датчики
При построении робота просто не обойтись без оптических датчиков. С помощью них аппарат будет «видеть» все вокруг. Эти сенсоры работают с помощью фоторезистора. Датчик отражения (излучатель и приемник) позволяет определять белые или черные участки на поверхности, что позволяет, к примеру, колесному роботу двигаться по нарисованной линии или определить близость препятствия. Источником света часто служит инфракрасный светодиод с линзой, а детектором — фотодиод или фототранзистор.
Отдельного внимания заслуживают видеокамеры. По сути, это глаза робота. Этот тип датчиков на сегодняшний широко используется благодаря росту технологий в сфере обработки изображений. Как понимаете, кроме роботов, применений видеокамерам достаточно: системы авторизации, распознавания образов, обнаружения движения в случае охранной деятельности и т.п.
Звуковые датчики
Эти датчики служат для безопасного передвижения роботов в пространстве за счет измерения расстояния до препятствия от нескольких сантиметров до нескольких метров. К ним относятся микрофон (позволяет фиксировать звук, голос и шум), дальномеры, которые представляют собой датчики, измеряющие расстояние до ближайших объектов и другие ультразвуковые сенсоры. УЗ особенно широко используются практически во всех отраслях робототехники.
Работа ультразвукового датчика основана на принципе эхолокации. Вот как это работает: динамик прибора издает УЗ импульс на определенной частоте и замеряет время до момента его возвращения на микрофон. Звуковые локаторы излучают направленные звуковые волны, которые отражаются от объектов, и часть этого звука снова поступает в датчик. При этом время поступления и интенсивность такого возвратного сигнала несут информацию о расстоянии до ближайших объектов.
Для автономных подводных аппаратов преимущественно используются технологии подводных гидролокаторов, а на земле звуковые локаторы в основном используются для предотвращения столкновений лишь в ближайших окрестностях, поскольку эти датчики характеризуются ограниченным диапазоном.
К числу других устройств, альтернативных по отношению к звуковым локаторам, относятся радары, лазеры и лидары. Вместо звука, в этом типе дальномеров используется отраженный от препятствия лазерный луч. Эти датчики получили более широкое применение в разработке автономных автомобилей, так как позволяют транспортному средству более эффективно справляться с дорожным движением.
Датчики положения
Этот вид датчиков используется в основном в беспилотных транспортных средствах, промышленных роботах, а также устройствах, требующих самобалансировки. К датчикам положения относятся GPS (система глобального позиционирования), ориентиры (исполняют роль маяка), гироскопы (определение угла вращения) и акселерометры. GPS – это спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположение робота в пространстве. GPS позволяет беспилотным наземным, воздушным и водным транспортным средствам находить свой маршрут и без труда двигаться от одной точки к другой.
Гироскопы в робототехнике также распространенная вещь. Они отвечают за балансировку и стабилизацию любого устройства. А за счет того, что эта деталь относительно недорогая, её можно установить в любой самодельный робот.
Акселерометр — это датчик, позволяющий роботу измерять ускорение тела под действием внешних сил. Этот прибор похож на массивное тело, способное передвигаться вдоль некоторой оси и соединено с корпусом прибора пружинами. Если такой прибор толкнуть вправо, то груз сместится по направляющей влево от центра оси.
Датчики наклона
Данные сенсоры используются в роботах, где нужно контролировать наклон, для поддержания равновесия и во избежание переворота аппарата на неровной поверхности. Существуют как с аналоговыми, так и с цифровыми интерфейсами.
Инфракрасные датчики
Самый доступный и простой вид датчиков, которые применяются в роботах для определения приближения. Инфракрасный датчик самостоятельно посылает инфракрасные волны и, поймав отраженный сигнал, определяет наличие препятствия перед собой.
В режиме «маяк», данный датчик посылает постоянные сигналы, по которым робот сможет определять примерное направление и удаленность маяка. Это позволяет запрограммировать робота таким образом, чтобы он всегда следовал в сторону этого маяка. Низкая стоимость этого датчика позволяет устанавливать его практически на все самодельные роботы, и таким образом, оснащать их способностью уходить от препятствий.
Датчики температуры
Датчик температуры — еще один полезный прибор, который часто используется в современных устройствах. Он служит для автоматического измерения температуры в различных средах. Как и в компьютерах, в роботах прибор используется для контролирования температуры процессора и его своевременного охлаждения.
Мы рассмотрели все самые основные сенсоры, которые используются в робототехнике и позволяют роботу быть более ловким, маневренным и производительным.
Занятие по робототехнике «Изучаем ультразвуковой датчик»
Краткое описание: Занятие посвящено построению конструкции робота и написанию программ « останавливающую прямолинейно движущегося робота, на расстоянии 15 см до стены или препятствия » и « написать программу для робота, держащего дистанцию в 15 см от препятствия » для него.
Тип занятия: занятие изучения и первичного закрепления новых знаний.
Форма занятия: комбинированное занятие.
Предметная: познакомиться с основными принципами работы датчика ультразвука Lego Mindsorms EV3, изучить работу отдельных блоков (движение, цикл, переключатель) в программе, научиться строить алгоритмы для использования датчика ультразвука.
Методологическая: воспитание информационной культуры учащихся, развитие умения выделять главное в задании, развитие внимательности, памяти, развитие навыков коллективной работы.
Метапредметная: формирование представлений о возможностях конструктора LEGO Mindstorms EV3 в разнообразных сферах деятельности.
Методы обучения: объяснительно-иллюстративный, наглядный, частично-поисковый, исследовательский.
Оборудование: компьютер, проектор, наборы Lego Mindstorms EV3, среда программирования, поля для заездов, коробка в качестве препятствия.
Используемые ЦОР: конспект урока, презентация, раздаточные материалы (инструкция по сборке).
Организационный момент. (1 мин).
Актуализация знаний (7 мин).
Теоретическая часть (7 мин).
Практическая часть (15 мин).
Подведение итогов урока. Рефлексия (3 мин).
Учитель : Здравствуйте, ребята! Очень хорошо, что сегодня вы пришли в полном составе и. Ведь сегодня мы с вами познакомимся с очень интересным робототехническим конструктором Lego Mindstorms EV3.
Робототехника является мультидисциплинарной наукой, а это значит, что специалист в этой области знаний должен владеть компьютерными и интеллектуальными технологиями. В современном производстве и промышленности очень востребованы специалисты, имеющие знания и навыки создания программного обеспечения для роботов.
Ребята, а все-таки что же такое робот? (машина, автомат, управляемое устройство….).
Молодцы, вы ответили правильно. Однако, слово «робот», в прямом понимании, означает механический человек.
Как вы думаете, для чего используются роботы? (упростить жизнь человека, выполнять сложную (монотонную, опасную) работу….).
Правильно, хотя современные роботы имеют разнообразный вид, они сохраняют, при этом, свое главное предназначение: заменить труд человека.
А почему, в некоторых случаях, лучше использовать роботов, а не труд людей ? (чтобы избежать травм и смертей на опасных производствах и в военной сфере, это выгодно (роботам не нужно платить зарплату), роботы не ошибаются, они быстрее…).
Ребята, а как вы думаете, что нужно для того, чтобы управлять роботом?
Используем «Мозговой штурм». Учитываются любые мысли и идеи – от банальных до невероятных. Предлагаю вам выйти к доске и записать их.
Глядя на доску, ответьте, чем мы будем сегодня заниматься? (программировать робота, учиться управлять, создавать робота…).
Человечество становится все более мобильным, поэтому роль транспортной отрасли возрастает – мы чаще перемещаемся на малые и большие расстояния и предъявляем все больше требований к скорости, безопасности, комфорту и экономичности этих передвижений.
Кто догадается, к чему я веду? (во всем мире создается автоматизированный транспорт, умный транспорт, беспилотный транспорт). Правильно, мы будем создавать беспилотного робота.
А чем должен быть оснащен беспилотник, для своей работы? Для ответа на этот вопрос, воспользуйтесь, пожалуйста Интернетом.
(«Беспилотный транспорт — механические средства для перевозки пассажиров или грузов, передвигающееся без экипажа на борту при помощи специальной системы автономного управления. Такой транспорт может передвигаться по специально выделенным полосам по заранее устанавливаемым маршрутам или участвовать в общем движении, поскольку он оснащен комплексом датчиков, камер, радаров и принимающим решения бортовым компьютером» ).
Движение робота по линии — самый популярный эксперимент начинающего робототехника.
Главная цель разработчика робота, а вы в перспективе ими станете, является создание такого механизма, который был бы автономным и мог выполнять поставленные задачи без человека. То есть система должна анализировать ситуацию и самостоятельно принимать решения.
Для того, чтобы наш робот мог двигаясь по полю, объезжать препятствия нам необходим по крайней мере один датчик ультразвука, который смог бы распознавать препятствия.
Главное назначение ультразвукового датчика, это определение расстояния до предметов, находящихся перед ним. Для этого датчик посылает звуковую волну высокой частоты (ультразвук), ловит обратную волну, отраженную от объекта и, замерив время на возвращение ультразвукового импульса, с высокой точностью рассчитывает расстояние до предмета.
Ультразвуковой датчик может выдавать измеренное расстояние в сантиметрах или в дюймах. Диапазон измерений датчика в сантиметрах равен от 0 до 255 см, в дюймах — от 0 до 100 дюймов. Датчик не может обнаруживать предметы на расстоянии менее 3 см (1,5 дюймов). Так же он не достаточно устойчиво измеряет расстояние до мягких, тканевых и малообъемных объектов. Кроме режимов измерения расстояния в сантиметрах и дюймах датчик имеет специальный режим «Присутствие/слушать» . В этом режиме датчик не излучает ультразвуковые импульсы, но способен обнаруживать импульсы другого ультразвукового датчика.
Прежде чем говорить о программировании, мы должны собрать простейших роботов-беспилотников. Действуя по аналогии с инструкцией, крепим датчик ультразвука в передней части робота. Подключим его кабелем к порту «3» модуля EV3 и приступим к разбору практических примеров использования ультразвукового датчика.
На данном этапе урока учитель раздает обучающимся инструкции по сборке робота-пятиминутки и помогает, в случае необходимости, отдельным группам в ходе сборки модели.
Задача №1: написать программу, останавливающую прямолинейно движущегося робота, на расстоянии 15 см до стены или препятствия.
Для решения задачи воспользуемся уже знакомым нам программным блоком «Ожидание» Оранжевой палитры, переключив его в Режим: «Ультразвуковой датчик» — «Сравнение» — «Расстояние в сантиметрах»
Начать прямолинейное движение вперед ( настраиваем блок “ рулевое управление” на движение вперёд с заданной скоростью)
Блок “ ожидание” , пока значение ультразвукового датчика не станет меньше 15 см.
А сейчас попробуйте сами написать программу для движения робота до достижения заданного расстояния до препятствия.
Вы можете загрузить её в робота и проверить на поле. Напоминаю, что тут мы можем использовать как блок “ независимое управление” , так и “ рулевое управление”.
Вижу, что все прекрасно справились с этим простейшим заданием. Сейчас попробуем усложнить задачу.
Задача №2: написать программу для робота, держащего дистанцию в 15 см от препятствия.
Поведение робота будет следующим:
при значении показания ультразвукового датчика больше 15 см робот будет двигаться вперед, стараясь приблизиться к препятствию;
при значении показания ультразвукового датчика меньше 15 см робот будет двигаться назад, стараясь удалиться от препятствия.
Мы уже знаем, что за организацию выбора выполняемых блоков в зависимости от условия отвечает программный блок «Переключатель» Оранжевой палитры. Установим для блока «Переключатель» режим «Ультразвуковой датчик» — «Сравнение» — «Расстояние в сантиметрах» Параметр «Тип сравнения» блока «Переключатель» установим в значение «Больше» =2, а «Пороговое значение» определим равным 15 Такие настройки программного блока «Переключатель» приведут к следующему поведению программы: При показаниях ультразвукового датчика больше 15 см будут выполняться программные блоки, помещенные в верхний контейнер в противном случае будут выполняться программные блоки, помещенные в нижний контейнер
Поместим в эти контейнеры программные блоки, включающие движение вперед и назад. Для того чтобы программный блок «Переключатель» выполнялся многократно, поместим его внутрь программного блока «Цикл» Оранжевой палитры
Загрузите получившуюся программу в робота и запустите ее на выполнение. Если перед роботом отсутствует препятствие, то он поедет вперед. Поднесите руку близко к ультразвуковому датчику, попробуйте отводить — приближать руку. Как ведет себя робот?
Подведение итогов урока. Рефлексия.
Итак, ребята, давайте подведем итоги нашей работы.
Какие виды алгоритмов мы с вами сегодня использовали при составлении программ?
Какие блоки программы необходимы для обнаружения препятствия?
Что в работе вызвало у вас затруднения?
Где в дальнейшем могут быть использованы знания, полученные вами сегодня на занятии?
Спасибо вам за продуктивную работу! До свидания.