Найти в Дзене
ProГаз и не только.

Билет №6

1. Начертить схему узла подогрева вашей станции? 2. Последовательность перестановки кранов при аварийном останове ПГ? 3. Назначение и принцы работы модуля отсекателя регулятора «ЛОРД»? Модуль отсекатель-регулятор давления образует единый конструктивно-монтажный блок, который монтируется непосредственно в газопровод и состоит из отсекателя потока газа и регулятора давления. Отсекатель предназначен для аварийного отключения подачи газа потребителю при изменении давления в выходном газопроводе выше или ниже установленных допустимых значений. Пределы срабатывания (закрытия) отсекателя: при повышении на 15% или понижении более 50% от заданного выходного давления 4. Приборы для измерения температуры, их классификация? Приборы для измерения температуры классифицируют следующим образом: Приборы для измерения температуры классифицируются в зависимости от того, какой метод измерения положен в основу их конструкции: термометры, применяются для измерения температуры контактным методом. Пиромет
Оглавление

1. Начертить схему узла подогрева вашей станции?

2. Последовательность перестановки кранов при аварийном останове ПГ?

  • открывается байпасный кран подогревателя газа;
  • если кран на байпасной линии подогревателя газа перешел в состояние «открыт» и достоверны значения кранов на входе и выходе подогревателя газа;
  • закрываются краны на входе и выходе подогревателя газа.

3. Назначение и принцы работы модуля отсекателя регулятора «ЛОРД»?

Модуль отсекатель-регулятор давления образует единый конструктивно-монтажный блок, который монтируется непосредственно в газопровод и состоит из отсекателя потока газа и регулятора давления. Отсекатель предназначен для аварийного отключения подачи газа потребителю при изменении давления в выходном газопроводе выше или ниже установленных допустимых значений. Пределы срабатывания (закрытия) отсекателя: при повышении на 15% или понижении более 50% от заданного выходного давления

4. Приборы для измерения температуры, их классификация?

Приборы для измерения температуры классифицируют следующим образом:

Приборы для измерения температуры классифицируются в зависимости от того, какой метод измерения положен в основу их конструкции: термометры, применяются для измерения температуры контактным методом. Пирометры, применяются для измерения температуры бесконтактным методом.

А. Термометры для измерения температуры контактным методом:

  1. термометры расширения, использующие принцип теплового расширения жидкости (жидкостные) или твердого тела (дилатометрические);
  2. термометры сопротивления, использующие изменение электрического Сопротивления веществ от температуры;
  3. термопреобразователи, использующие зависимость между термоэлектродвижущей силой (термоэдс), развиваемой термопарой (спаем) из 2 различных проводников, и разностью температур спая и свободных концов термопреобразователя;
  4. манометрические термометры, использующие зависимость между температурой и давлением газа или паров жидкости, а также между температурой и объемом жидкости в замкнутой термосистеме.

Б. Пирометры для измерения температуры бесконтактным методом:

  1. яркостные пирометры, измеряющие яркость нагретого тела на данной длине волны;
  2. радиационные пирометры, измеряющие температуру по тепловому действию лучеиспускания накаленного тела во всем спектре длин волн.

5. Способы предупреждение гидратообразования?

Гидраты в газопроводе образуются в тех случаях, когда точка росы транспортируемого газа равна или выше рабочей температуры газа. Зная состав, влажность транспортируемого газа, изменение температуры и давления в газопроводе, можно заранее определить возможные зоны образования гидратов и заменить мероприятия по их предотвращению.

В качестве способов борьбы с образованием кристаллогидратов применяют следующие методы:

  • общий или частичный подогрев газа;
  • локальный подогрев корпуса регуляторов;
  • Снижение давления газа в газопроводе ниже равновесного давления образования гидратов.
  • ввод метанола в газопровод.

Все перечисленные методы имеют как свои достоинства, так и недостатки. Разберем их по отдельности.

  1. Поддержание температуры газа выше температуры гидратообразования путем предварительного подогрева газа. Широкое применение этот способ нашел только в технологических схемах подготовки газа на газовых промыслах и ГРС.
  2. Локальный подогрев регуляторов осуществляют путем обматывания корпуса электрическим ленточным обогревателем. При своей относительной экономической выгоде, данный способ требует наличия стороннего источника электроэнергии.
  3. Снижение давления газа в газопроводе ниже равновесного давления образования гидратов. Применение этого способа экономически невыгодно, так как при этом снижается расход в газопроводе. Если на каком-либо участке газопровода образовалась гидратная пробка, то ее можно разложить снижением давления. Для этого участок отключают путем перекрытия линейных запорных кранов, освобождают от газа, перекачивая его в соседний газопровод или выпуская в атмосферу через свечи с обеих сторон до определенного давления. Контроль за снижением давления осуществляют по манометрам, установленным на обводных линиях кранов. При этом запрещается создавать перепад давления на гидратной пробке или проводить одностороннее освобождение газа во избежание движения пробки, которое может привести к разрушению линейного крана. При проведении указанных работ должна обеспечиваться надежная связь между работающими. Этот метод дает положительный эффект при ликвидации гидратной пробки, образовавшейся при положительных температурах.
  4. Ввод в газопровод ингибиторов — веществ, препятствующих гидратообразованию. В качестве ингибиторов применяют метиловый спирт, раствор диэтиленгликоля (ДЭГ), триэтиленгликоля (ТЭГ) и хлористого кальция. Введенные в поток газа ингибиторы частично поглощают водяные пары и переводят их в раствор, не образующий гидратов или образующий их при более низких температурах. На магистральных газопроводах как для ликвидации уже образовавшихся гидратных пробок, так и для профилактических заливок с целью предупреждения гидратообразования чаще всего применяют метанол.

6. Останов эксплуатироваемого вами подогревателя?

  • по команде с АРМ ГРС или ПУ ДП
  • активен сигнал «прорыв газа в полость подогревателя газа»;

7. Типы счетчиков газа (ротационные, турбинные, СГ, РУТС-ДМД, ТZ, Дельта и другие), краткое описание конструкции и принцип работы?

Типы расходомеров-счетчиков газа

Турбинные расходомеры и счетчики газа:

Отечественные: СГ-16М, СГ-75М , ТРСГ, ДРОТ;

Импортные: ЛГ-К-Ех, TZ / FLUXI , TRZ , SM - RI - X .

Ротационные счетчики газа:

Выпускаемые в России по лицензии: RVG , ROOTS ,

Импортные: РГ-40, РГ-100, РГ-250, РГ-400, РГ-650, РГ-1000, РЛ-2,5, РЛ-4,0, РЛ-6,0, РЛ-20, G -2,5 РЛ, G -4 РЛ, G -6 РЛ, G -10 РЛ, DELTA , GMS , IMB (все три последние в ряду: G -10, G -16, G -25, G -40, G -65, G -100, G -160, G 250), некоторые типы имеют G -400; G -650 и G -1000

Вихревые расходомеры-счетчики:

Отечественные: ВРСГ-1. СВГ.М, ВИР-100;

Импортные: VORFLO , PhD TM , V - Bar TM

Ультразвуковые расходомеры-счетчики газа:

Отечественные: Гобой-1, ГАЗ-001, Днепр-7, УБСГ-001, УБСГ-002.

Импортные: Q - sonik , DANIEL , (“Курс-01” G -16-1000)

Мембранные счетчики газа:

Отечественные: СГБ G -2,5…4…6, G 4 L , СГК-1,6; 2,5; 4,0;

Выпускаемые в России по лицензии: NPM G -1,6; 2,5; 4,0; ВК- G -1,6; 2,5; 4,0;

Импортные: СГД-1,6 СГД-2,5 (взамен СГМ-1.6; 2,5);СГМН-1 G -6; NP -1,6…2,5…4, МКМ G -6; Г-2,5,Г-4, КГ-4, ВК- G -1,6, 2,5, 4,0, 6,0, 10,0, 16,0, 25,0, 40,0, SN G -1,6, 2,5, 4,0, 6,0 , «Магнол»; SN G -10..100; “Метрикс” G -10, “ Gallus -2000” G -1,6, G -2,5, G -4,

Струйные расходомеры-счетчики газа

Отечественные: СГ-1, СГ-2;

Левитационные импульсные счетчики газа

Отечественный: ЛИС-1.

Барабанные счетчики газа:

Отечественные: ГСБ-400, РГ-7000

Импортные: Ritter TG -01, TG -05, TG -1, TG -3, TG -5, TG -10, TG -20, TG -25, TG -50

Расходомеры постоянного перепада давления (ротаметры):

Отечественые: РМА-01, РМ-02, 04, 06, РМФ-02, 04, 06, ДПС

Импортные: VA -20, VA -30, SA -20, FA -20, DK -46, 47, 48, K -20, VA -10/1, VA -10/ S , H -250/ PTFE , H -250/ M 9, H -54, DK -32, DK -34, DK -370;

10А1197/98, 10А6100, 10А5400, 10А3220/50.

Расходомеры переменного перепада давления (сужающие устройства):

Отечественные: Суперфлоу, Гиперфлоу, 3095 MV

Импортные:

Принципы действия расходомеров следующие:

Турбинные счетчики газа.

Выполнены в виде трубы, в которой расположена винтовая турбинка, как правило с небольшим перекрытием лопаток одной другую. В проточной части корпуса расположены обтекатели перекрывающие большую часть сечения трубопровода, чем обеспечивается дополнительное выравнивание эпюры скоростей потока и увеличение скорости течения газа. Кроме того происходит формирование турбулентного режима течения газа, за счет чего обеспечивает линейность характеристики счетчика газа в большом диапазоне. Высота турбинки как правило не превышает 25-30% радиуса. На входе в счетчик в ряде конструкций предусмотрен дополнительный струевыпрямитель потока выполненный или в виде прямых лопаток или в виде «толстого» диска с отверстиями разного диаметра. Установка сетки на входе турбинного счетчика, как, правило, не применяется, так как ее засорение уменьшает площадь проходного сечения трубопровода, соответственно увеличивает скорость течения потока, что приводит к увеличению показаний счетчика.

Преобразование скорости вращения в турбинки в объемные значения количества прошедшего газа осуществляется путем передачи вращения турбинки через магнитную муфту на счетный механизм, в котором путем подбора пар шестеренок (во время градуировки) обеспечивается линейная связь между скоростью вращением турбинки и количеством пройденного газа.

Другим методом получения результата количества пройденного газа в зависимости от скорости вращения турбинки является использование для индикации скорости магнитоиндукционного преобразователя. Лопатки турбинки при прохождении вблизи преобразователя возбуждают в нем электрический сигнал, поэтому скорость вращения турбинки и частота сигнала с преобразователя пропорциональны. При таком методе преобразование сигнала осуществляется в электронном блоке, так же как и вычисление объема прошедшего газа. Для обеспечения взрывозащищенности счетчика блок питания должен быть выполнен с взрывозащитой. Однако применение электронного блока упрощает вопрос расширения диапазона измерения счетчика (для счетчика с механическим счетным механизмом 1:20 или 1:30), так как нелинейность характеристики счетчика, проявляющаяся на малых расходах, легко устраняется применением кусочно-линейной апроксимацией характеристики (до 1:50), чего в счетчике с механической счетной головкой сделать нельзя.

Для измерения расхода турбинные счетчика газа СГ-16М и СГ-75М имеют взрывозащищенный импульсный выход (геркон) «сухие контакты реле» с частотой 1 имп./1куб.м. и не взрывозащищенный импульсный выход (оптопара) с частотой импульсов 560 имп/куб.м.

Ротационный счетчик газа.

Принцип действия счетчика заключается в обкатывании двух роторов специально спрофилированной формы (напоминающую цифру «восемь»), друг по другу под действием потока газа. Синхронность обкатывания роторов обеспечивается специальными шестеренками соединенными с соответствующим ротором и между собой. Для обеспечения точности измерения профиль роторов и внутренняя поверхность корпуса счетчика должны быть выполнены с высокой точностью, что достигается применением специальных технологических приемов обработки этих поверхностей. Необходимо выделить несколько преимуществ этих типов счетчиков перед турбинными. Большой диапазон измеряемых расходов (до 1:160) и малая погрешность при измерении переменных потоков. Второе свойство - делает их незаменимыми для измерения расхода газа потребляющих «крышными» котельными, работающих в импульсном режиме. Любое направление газа через счетчик, отсутствие требований к наличию прямых участков перед и за счетчиком.

Ротационные счетчики RVG (также как и “ DELTA ” и “ ROOTS ” ) могут доукомплектовываться, кроме штатного низкочастотного датчика (геркон) с частотой срабатывания 10 имп/куб.м., среднечастотным Е-300 с частотой срабатывания до 200 имп/куб.м., и высокочастотным до 14025 имп./куб.м.

Вихревые расходомеры-счетчики.

Принцип действия основан на эффекте возникновения периодических вихрей при обтекании потоком газа тела обтекания. Частота срыва вихрей пропорциональна скорости потока и, соответственно, объемному расходу. Индикацию вихрей может осуществляться термоанемометром (ВРСГ-1) или ультразвуком (ВИР-100, СВГ.М). По диапазону измерения счетчики занимают промежуточное значение между турбинными и ротационными до 1:50. В связи с тем, что в данном типе счетчиков отсутствуют подвижные элементы, нет необходимости в системе смазки, необходимой для турбинных и ротационных счетчиков. Появляется возможность использовать данный тип счетчиков для измерения количества кислорода, который измерять турбинными и ротационными счетчиками категорически нельзя из-за сгорания масла в среде кислорода. Также верхний предел измерения расхода для данного типа прибора выше, чем у турбинных, например для Ду=200 мм. турбинные счетчики применяются до 2500 м 3/час, а ВРСГ-1 до 5000 м 3/час

Ультразвуковые расходомеры-счетчики газа.

Принцип действия заключается в направлении ультразвукового луча в направлении по потоку и против потока и определении разницы времени прохождения этих двух лучей. Разница во времени пропорциональна скорости течения газа. До 2002 года в России ультразвуковые расходомеры на газ не выпускались. В настоящее время выпускаются ультразвуковые расходомеры «Гобой-1» на расходы 10, 16, 25, 40, 65, 100 м 3/ч , на трубопроводы от 25 до 80 мм., для абсолютных давлений до 2 кгс/см 2 , УБСГ-001 на расходы от 0,1 до 16 м 3/ч., УБСГ-002 на расходы от 0,16 до 25 м 3/ч Ду=1.1/42 , (32 мм) и «ГАЗ-001» для трубопроводов большего диаметра (более 100 мм.) и для давлений до 60 кгс/см 2, но полного типоразмерного ряда Производитель не опубликовал. Ультразвуковой расходомер-счетчик «Днепр-7» с накладными датчиками излучателями-приемниками. Принцип действия расходомера-счетчика основан на преобразовании доплеровской разности частот отражений ультразвука от движущихся неоднородностей потока, линейно зависящей от скорости движения потока.

Мембранные счетчики газа.

Принцип работы счетчика основан на перемещении подвижных перегородок (мембран) камер при поступлении газа в счетчик. Впуск и выпуск газа, расход которого необходимо измерить, вызывает переменное перемещение мембран и через систему рычагов и редуктор приводит в действие счетный механизм. Мембранные счетчики отличаются большим диапазоном измерения до 1:100, но рассчитаны для работы при низком давлении газа, как правило не более 0,5 кгс/см 2. Мембранные счетчики в основном предназначены для измерения расхода газа в домах, коттеджах. Если турбинные и ротационные счетчики газа сопровождаются шумом, связанным с вращением подвижных элементов, то мембранные счетчики работают бесшумно. Они не требуют смазки во время эксплуатации, в то время как турбинные счетчики необходимо смазывать раз в квартал. Однако при больших расходах более 25 м 3/ч размеры счетчиков становятся довольно большими.

Струйные счетчики газа.

Принцип работы основан на колебании струи газа в специальном струйном генераторе. Струя газа по переменно перебрасывается из одного устойчивого положения в другое и создает при этом пульсации давления и звука с частотой пропорциональной скорости течения газа и соответственно объемного расхода. В электронном преобразователе происходит вычисление количества пропущенного газа. В настоящее время серийно выпускаются толь две модификации струйных бытовых счетчиков газа СГ-1 для измерения расхода 0,03 – 1,2 м 3/ч и СГ-2 для 0,03 – 6,0 м 3/ч.

Левитационный счетчик газа.

Является тахометрическим прибором, в котором подвижный элемент вращается в газовых подшипниках. Скорость вращения подвижного элемента пропорциональна объемному расходу. Вторичный преобразователь преобразует скорость вращения в электрический сигнал, которых в электронном блоке преобразуется в измеренные количество пройденного газа. Результаты индицируются на индикаторе. Диапазон измеряемых расходов от 0,03 до 7 м 3/ч. Температура измеряемого газа от –50 до +50 0С. Температура окружающей среды –30 до +50 0С. Основная погрешность ± 1,5%

Барабанные счетчики газа.

Принцип действия состоит в том, под действием перепада давления газа происходит вращение барабана, разделенного на несколько камер, измерительный объем которых ограничен уровнем затворной жидкости. При вращении барабана периодически разные камеры заполняются и опорожняются газом. Ранее выпускаемые барабанные газовые счетчики ГСБ-160 на пределы измерения 0,08-0,24 м 3/ч. ГСБ-400 на пределы 0,2-6 м 3/ч. - в настоящее время не выпускаются. Основная погрешность измерения 1,0%.

Импортные барабанные счетчики Ritter в России сертифицированы не все выпускаемые фирмой типоразмеры, как правило, используются в качестве образцовых средств. Основная погрешность измерения 0,2%. Диапазоны измерения всех семи типоразмеров от 1 л/ч до 18000 л/ч.

Расходомеры постоянного перепада давления (ротаметры).

Принцип действия расходомеров данного типа основан на том, что поплавок плавающий (подвешенный) в потоке изменяет свое положение по вертикали в зависимости от величины расхода газа. Для обеспечения линейности такого перемещения, площадь проходного сечения датчика расхода изменяется таким образом, чтобы перепад давления оставался постоянным. Это достигается тем, что трубка в которой перемещается поплавок выполнена конической с расширением конуса вверх (ротаметры типа РМ) или трубка выполнена с прорезью и поршень (плавок), поднимаясь вверх открывает для потока большее проходное сечение (ДПС-7,5, ДПС-10).

Ротаметры выпускаются в основном для технологических целей, имеют, как правило, большую величину основной погрешности 2,5-4%, небольшой диапазон измерения от 1:5 до 1:10.

Выпускаются ротаметры с коническими стеклами (РМ, РМФ, РСБ), пневматические (РП, РПФ, РПО) и электрические (РЭ, РЭВ) с индуктивным выходом.

Расходомеры переменного перепада давления (на основе сужающих устройств).

Использование сужающих устройств для измерения расхода и количества газа являлось до недавнего времени самым используемым. Однако малый диапазон измерения расхода (1:3) с приемлемой для коммерческого учета газа погрешностью ±1,5% ,а также разработка турбинных и ротационных счетчиков газа несколько ослабило позиции расходомеров на основе сужающих устройств.

В последнее десятилетие за счет разработки новых датчиков давления с большими диапазонами измерения и развития микропроцессорной техники появились и успешно внедряются несколько комплексов на базе сужающих устройств, такие как Гиперфлоу-3МП, Суперфлоу-2, массовый расходомер модели 3095 MV . Для трубопроводов большого диаметра, более 300-400 мм. данный метод измерения является вполне конкурентным.

Во всех вышеперечисленных расходомерах-счетчиках измеряется давление и температура газа, перепад давления на сужающем устройстве (как правило, стандартизованном: диафрагмы, сопла, трубы Вентури, но применяются и не стандартные средства измерения ) и вычисляется объемный и массовый расходы газа и количество пройденного газа приведенного к нормальным условиям. При наличии сетевого питания расходомер может иметь токовый сигнал, при автономном питании передача сигнала осуществляется через интерфейс RS -232 или RS -485.

Как правило, выпускаются счетчики газа, т.е. приборы измеряющие количества прошедшего газа нарастающим итогом. Мгновенные значения расходов не индицируются. Исключением являются ЛГ-к-Ех, ТРСГ, ДРОТ, ВСРГ-1, СВГ.М, ГАЗ-001, в которых измеряется расход, а количество прошедшего газа определяется интегрированием по времени.

По давлению:

мембранные счетчики газа выпускаются на малые избыточные давления до 0,5 кгс/кв.см.

Ротационные и турбинные (СГ-16М) до 16 кгс/кв.см. и СГ-75М до 75 кгс/кв.см. Турбинные ЛГ-к-Ех до 25 кгс/кв.см. ГАЗ-001 до 60 кгс/кв.см., «Гобой-1» до 2 кгс/кв.см. РГ до 1 кгс/кв.см.

По применимости для различных газов:

Газы с плотностью более 0,67 кг/куб.м., в том числе воздух, азот и другие неагрессивные газы.

Турбинные и роторные счетчики для кислорода не применимы.

Ультразвуковые, мембранные и вихревые принципиальных ограничений для работы по типу газа не имеют, но необходимо учитывать, что, как правило, применение для кислорода и водорода требует отдельной сертификации, которую счетчики, как правило, не имеют.

Все счетчики градуируются на воздухе.

Стенды газовые метрологические на другие газы могут быть созданы только в специализированных (закрытых) предприятиях. В РФ таких стендов нет.

По диаметрам трубопровода:

Мембранные: 1/2 2 , 3/4 2 , 1 2 , 1.1/42 , 1.1/2 2 , 2 2 , 3 2 , 4 2 , 5 2 .

Ротационные: RVG Ду=50, 80, 100 мм.

Ротационные ROOTS и DELTA : Ду=40, 50, 80, 100, 150 мм.

Турбинные: СГ-16М Ду=50, 80, 100, 150, 200 мм.

Турбинные: ЛГ-К-Ех Ду=80, 100, 150, 200 мм.

Турбинные: TZ / FLUXI , Ду=50, 80, 100, 150, 200, 250, 300 мм.

Турбинные: TRZ Ду=50, 80, 100, 150, 200, 250, 300, 400, 500, 600 мм.

Вихревые: ВРСГ-1 Ду=50, 80, 100, 125, 150, 200 мм.

Вихревые: СВГ.М Ду=50, 80, 100, 150, 200 мм.

Струйные: СГ-1, СГ-2 Ду= 1/2 2 , 3/4 2 ,

Левитационный: ЛИС-1 Ду = 1/2 2

Ротаметры РМ - Ду=3, 6, 15, 40 мм.; РП - Ду=15, 20, 40, 70, 100 мм.;

РЭ – Ду=6, 10, 15, 25, 40, 70, 100 мм.

Расходомеры переменного перепада давления Стандартные сужающие устройства от 50 мм, нестандартные от 12,5 мм., верхние пределы неограниченные.

Ультразвуковые расходомеры-счетчики газа: Гобой – Ду=25, 40, 65, 80 мм., УБСГ – Ду=1.1/42. ГАЗ-001 – Ду=100, 125, 150 до 600 мм.

8. Назначение режимной карты подогревателя и эксплуатация подогревателя согласно режимной карты?

Каждый котел должен иметь свою режимную карту.

Эксплуатация парового или водогрейного газового котла должна производиться согласно его режимной карте.

Цель режимной карты - показать нужное давление газа и воздуха при определенной нагрузке котла. Процесс горения при этом должен быть наиболее полным и стабильным, эксплуатация котла эффективной и безопасной.

Режимная карта составляется по результатам теплотехнических испытаний организацией осуществляющей пусконаладочные работы. Испытания производятся 1 раз в три года.

Режимная карта может быть выполнена в виде таблицы или графика. В случае таблицы в ней задаются несколько рабочих режимов: 30%, 50%, 70%, 100% от производительности котла.

Возле каждого котла должен находиться дубликат режимной карты. На нем должна стоять подпись от организации проводившей пуско-наладочные работы.

Основная цель режимных карт обеспечить в регулировочном диапазоне нагрузок надежную и экономичную работу котла с минимальными выбросами в атмосферу вредных веществ (окислов азота), на которые можно влиять режимом работы топки. Эти требования часто вступают в противоречие между собой и с величиной регулировочного диапазона нагрузок. Поэтому режимные указания предполагают наличие некоторых компромиссов. Однако приоритет должен быть отдан надежности, под которой понимается пожаро- и взрывобезопасность, выдерживание приемлемых температур пара и металла поверхностей нагрева, отсутствие интенсивного шлакования поверхностей нагрева или затруднений с выходом жидкого шлака, отсутствие интенсивной коррозии воздухоподогревателя, обеспечение желаемого диапазона нагрузок с минимальным использованием в дополнение к твердому топливу газа или мазута. Ограничения, обусловленные этими обстоятельствами, должны быть указаны в режимной карте.