Найти в Дзене
Запретные Темы Истории

Цивилизация майя: особенности индейской «математики»

Предыдущую публикацию по данной теме можно прочитать по этой ссылке. Любопытно, что использованный майя принцип записи чисел, представляет именно комбинацию аддитивного и позиционного принципов. При этом, для аддитивной части представления числа используются самые простейшие символы – точки и черточки, а вот для чисел, соответствующих основаниям разрядов и относящихся к позиционной части записи, – довольно замысловатые иероглифы. Получается какой-то странный гибрид ужа с ежом… Неужели нельзя было найти символы попроще?.. Есть ведь крестики, кружочки, треугольнички… Есть тут какая-то искусственность, но какая – пока сформулировать до конца не удается… Кстати, есть еще одна странность, которая касается как раз «кружочка» – то есть нуля, который у майя тоже представлен не самым простым символом – каким-никаким, а рисунком, пусть даже всего лишь в виде стилизованной раковины. Использование индейцами нуля принято считать чуть ли не величайшим достижением. А уж то, что в этом они опередили н

Предыдущую публикацию по данной теме можно прочитать по этой ссылке.

Любопытно, что использованный майя принцип записи чисел, представляет именно комбинацию аддитивного и позиционного принципов. При этом, для аддитивной части представления числа используются самые простейшие символы – точки и черточки, а вот для чисел, соответствующих основаниям разрядов и относящихся к позиционной части записи, – довольно замысловатые иероглифы. Получается какой-то странный гибрид ужа с ежом… Неужели нельзя было найти символы попроще?.. Есть ведь крестики, кружочки, треугольнички…

Есть тут какая-то искусственность, но какая – пока сформулировать до конца не удается…

Кстати, есть еще одна странность, которая касается как раз «кружочка» – то есть нуля, который у майя тоже представлен не самым простым символом – каким-никаким, а рисунком, пусть даже всего лишь в виде стилизованной раковины.

Нули-раковины в записи майя (фрагмент Дрезденского кодекса). Изображение взято из книги А. Ю. Склярова «Древняя Мексика без кривых зеркал», издательство ВЕЧЕ, 2009
Нули-раковины в записи майя (фрагмент Дрезденского кодекса). Изображение взято из книги А. Ю. Склярова «Древняя Мексика без кривых зеркал», издательство ВЕЧЕ, 2009

Использование индейцами нуля принято считать чуть ли не величайшим достижением. А уж то, что в этом они опередили народы Старого Света, прямо-таки с гордостью за майя стремится упомянуть практически каждый автор книг по истории Мезоамерики, вновь упоминая про «развитое математическое знание». Только есть ли, чем тут гордиться?..

Ноль, действительно, совершенно не лишний элемент в представлении числа. И с точки зрения системы записи чисел (о которой, собственно, и нужно говорить применительно к майя) он во многом упрощает задачу. Но что будет с точки зрения именно математики?..

А вот для математики, и особенно для математических операций, ноль способен создавать целый ряд проблем. Особенно если речь идет о современной математике и ее физических приложениях. Дело в том, что на ноль нельзя делить!.. Ноль – это своеобразное «исключение из правил». В результате таких его особых свойств, скажем, в любой теории функций с нулем приходится буквально бороться специальными методами.

Простому человеку, далекому от высшей математики, довольно сложно представить себе математику без нуля, и, естественно, введение такого понятия кажется действительно серьезным завоеванием майя. Однако в современной науке под названием «высшая математика» уже имеют место попытки построения математики без нуля, которая, благодаря отсутствию этого «особого числа», предоставляет целый ряд преимуществ…

Так что и с появление нуля у майя далеко не все однозначно: с точки зрения простого представления чисел, это – шаг вперед; а вот с точки зрения современной высшей математики, это событие можно расценивать и как шаг назад!..

Как бы то ни было, появление нуля в системе представления чисел майя понятно и логично. А вот зачем понадобилось менять в одном месте – на третьем разряде – само основание системы счета с 20 на 18 ?.. Подобное искажение единой линии представляется нелогичным и даже неудобным.

Большинство историков сходится в том, что данное искажение было неким образом связано с астрономическими и календарными вычислениями майя. И на это подталкивает еще одна особенность индейской «математики». Дело в том, что в сохранившихся письменных источниках изображения чисел так или иначе привязаны именно к счету дней.

Мне неизвестно, насколько всеобъемлюща эта закономерность. Однако ни в одном из приводимых в доступной литературе переводов текстов майя мне не доводилось встречать, например, счета каких-то предметов или численности армии. Текстов типа «у него было пять наложниц» или «он со своими двадцатью сторонниками» и тому подобное не встречается нигде!.. Только счет в днях от какой-то «нулевой даты».

Конечно, если судить по приводимым историками описаниям испанских конкистадоров и хронистов, индейцы считали не только дни. Но почему тогда это никоим образом не нашло отражения в письменных источниках?.. Я не беру тут в расчет так называемое «рисуночное письмо», которое к понятию «развитой письменности» не имеет отношения…

Ведь если дело обстоит именно так, если фиксировался только счет дней, то сам по себе факт столь избирательного использования чисел довольно значителен. Система записи в таком случае теряет еще один признак связи с математикой, один из основных принципов которой заключается в абстрагировании от предмета счета. У майя же мы никакого абстрагирования не наблюдаем. Все получается привязано именно к счету дней…

Но если принять за данность такую привязку, странности искажения системы записи чисел в третьем разряде действительно можно дать более-менее правдоподобное объяснение. Эта запись адаптирована под 360-дневный год, в котором 18 месяцев по 20 дней. И эта адаптация позволяет не только производить подсчет количества 360-дневных лет по уже простой двадцатеричной системе (без каких-либо «исключений» в разрядах), но и легко переходить от счета в днях к счету в годах и наоборот.

Для примера: дата 5.11.7.9.18 означает количество дней, равное 5х144000+11х7200+7х360+9х20+18х1 = 801918. Если перейти теперь к системе с 360-дневным годом, то последняя «цифра» в записи будет означать день месяца, предпоследняя – номер месяца, а остаток (исходная запись с отброшенными двумя последними разрядами) будет означать количество 360-дневных лет. В приводимом примере получим: 18-й день 9-го месяца года, который будет иметь вид 5.11.7 в обычной двадцатеричной системе счета. Или, переходя к обычной нам десятеричной системе (учитывая, что 5х400+11х20+7х1=2227), получим 18-й день 9-го месяца 2227 года.

Действительно, удобно. Но…

Опять возникает «но»…

Если перейти от формально-математических лет к реальным годам, то счет получается довольно приблизительный. Это, конечно, не наша привычная фраза типа «где-то лет десять-двенадцать назад», но все-таки. Погрешность в 5 с лишним дней за год – довольно существенна. Даже в приведенном несколькими строками выше примере ошибка составит около трех десятков лет, то есть что-то сопоставимое по порядку величины со средней продолжительностью жизни того же индейца майя.

А где же тогда хваленая точность календаря майя?!. (А. Скляров)

Продолжение следует...

Дрезденский кодекс. Изображение взято с сайта: https://upload.wikimedia.org/wikipedia/commons/f/fc/Detaille_del_Códice_de_Dresden_dibujado_por_Lacambalam.jpg
Дрезденский кодекс. Изображение взято с сайта: https://upload.wikimedia.org/wikipedia/commons/f/fc/Detaille_del_Códice_de_Dresden_dibujado_por_Lacambalam.jpg

#история #майя #загадкиистории #древниецивилизации #письменность #культура #андрейскляров #мезоамерика #мексика #математика #арифметика #календарь