Найти тему
РИА Новости

Сигнал пришел из космоса. Итог эксперимента на Байкале шокировал ученых

Оглавление

Владислав Стрекопытов

Ученые подвели итоги первых двух лет работы байкальского глубоководного нейтринного телескопа Baikal-GVD. Главный результат — удалось подтвердить существование нейтринного потока астрофизической природы и определить его параметры. Отчетная статья вышла в журнале Physical Review D.

Неуловимая частица

Существование нейтрино экспериментально подтвердили в 1956-м, когда американские физики анализировали взаимодействие с веществом субатомных частиц, вылетающих из ядерного реактора.

Нейтрино известны своей неуловимостью и невероятной распространенностью. В зависимости от источника их делят на три группы. Во-первых, космические, во-вторых, возникающие в процессах распада радионуклидов в недрах Земли. И наконец, нейтрино от искусственных источников — реакторов и ускорителей.

Так художник представил взаимодействие нейтрино сверхвысоких энергий и молекул воды. © Nicolle R. Fuller/NSF/IceCub
Так художник представил взаимодействие нейтрино сверхвысоких энергий и молекул воды. © Nicolle R. Fuller/NSF/IceCub

Космические нейтрино, в свою очередь, бывают четырех видов. Первые — реликтовые или космологические, оставшиеся после Большого взрыва. Затем — звездные, в том числе солнечные. Их источником служат ядерные реакции в недрах звезд. Нейтрино космических лучей возникают при взаимодействиях в ядрах галактик, взрывах сверхновых и других космических событиях с гигантским выделением энергии. Четвертый вид образуется в атмосфере Земли при столкновениях протонов космических лучей с атомами азота.

-3

Как ловят космические нейтрино

В середине нулевых в мире начали строить обсерватории, способные фиксировать космические нейтрино. Их оборудуют глубоко под землей, в толще льда или воды, чтобы изолировать детекторы от фонового излучения.

Нейтрино нельзя обнаружить напрямую, поскольку они лишены электрического заряда, а их масса ничтожно мала. Но иногда — очень редко — они взаимодействуют с частицами среды, через которую проходят. Так рождаются заряженные мюоны, при быстром прохождении которых сквозь воду или лед возникает голубое свечение: эффект Вавилова — Черенкова. Его и фиксируют оптические модули нейтринных обсерваторий.

Сейчас таких установок три. В 2011-м на американской антарктической станции "Амундсен — Скотт" запустили нейтринную обсерваторию IceCube. В толще льда на глубине более двух тысяч метров разместили около пяти тысяч оптических модулей с чувствительными фотоумножителями внутри. В 2013-м участники проекта IceCube объявили, что им удалось зафиксировать суммарный, или, как говорят ученые, диффузный, поток астрофизических нейтрино, пока без разделения по источникам.

Такой значимый для развития нейтринной астрономии и астрофизики результат нужно было подтвердить другими экспериментами. Это и стало первоочередной задачей двух нейтринных телескопов: французского ANTARES, который работает на глубине 2400 метров в Средиземном море (часть крупного европейского проекта KM3NeT), и российского подводного Байкальского нейтринного телескопа, известного как проект Baikal-GVD.

Фотоэлектронный умножитель нейтринного телескопа Baikal-GVD. © BAIKAL-GVD
Фотоэлектронный умножитель нейтринного телескопа Baikal-GVD. © BAIKAL-GVD

От первого детектора до мегасайенс-установок

Baikal-GVD — воплощение идей выдающегося советского физика академика Моисея Маркова. В 1960-м он предложил регистрировать неуловимые частицы в прозрачных природных средах, где на определенном расстоянии друг от друга расположены детекторы света.

В 1980-м в Институте ядерных исследований Российской академии наук (ИЯИ РАН) основали Лабораторию нейтринной астрофизики высоких энергий, которую возглавил Григорий Домогацкий. Ее задачей стало создание нейтринного телескопа в водах озера Байкал и проведение на нем физических исследований.

К проекту присоединились еще семь российских институтов и немецкий исследовательский центр по физике частиц DESY. И в 1998-м на Байкале появился детектор нейтрино высоких энергий первого поколения — глубоководный нейтринный телескоп НТ-200.

Погружение гирлянды оптических модулей. © Фото : ИЯИ РАН
Погружение гирлянды оптических модулей. © Фото : ИЯИ РАН

Он стал одним из мировых лидеров в исследовании природного потока нейтрино сверхвысоких (свыше десяти тераэлектронвольт) энергий и в поиске кандидатов на роль частиц темной материи. Но главное: на нем отработали технологию регистрации космических частиц в естественных средах, что позволило перейти к созданию телескопов кубокилометрового масштаба.

Байкальский нейтринный телескоп, запущенный в 2021-м, — уникальная научная установка, расположенная в 3,6 километра от берега на глубине около 1300 метров.

-6

Впечатляющий результат

Baikal-GVD — крупнейший детектор нейтрино в Северном полушарии и второй по величине в мире. При этом он не уступает по чувствительности самой большой нейтринной обсерватории IceCube в Антарктиде. Обе установки дополняют друг друга. Есть направления, невидимые для IceCube, зато доступные для Baikal-GVD. Вместе они охватывают всю небесную сферу.

Запуск телескопа на Байкале стал важнейшим шагом на пути к созданию глобальной сети нейтринных детекторов. Эффективность синергетического подхода быстро подтвердилась.

Подготовка к запуску глубоководного нейтринного телескопа Baikal-GVD на озере Байкал. 
© РИА Новости / Кирилл Шипицин
Подготовка к запуску глубоководного нейтринного телескопа Baikal-GVD на озере Байкал. © РИА Новости / Кирилл Шипицин

Научная значимость результатов, полученных за два года работы Байкальского телескопа, заключается прежде всего в том, что они подтвердили наличие астрофизических нейтрино, ранее обнаруженных IceCube.

Работы по развертыванию Байкальского нейтринного телескопа продолжаются. Каждый год с середины февраля по середину апреля на Байкале устанавливают новые кластеры. В 2023-м ученые планируют добавить к десяти уже действующим еще два. Ожидается, что к 2027 году Baikal-GVD достигнет объема в один кубический километр, сравнявшись с IceCube.