Найти тему

Оптическое волокно

Структура оптоволоконного кабеля схожа с описанной выше структурой коаксиаль­ного провода. Разница состоит лишь в том, что в первом нет экранирующей сетки. На рисунке показана отдельная оптоволоконная жила. В центре ее располагается сте­клянная сердцевина, по которой распространяется свет. В многомодовом оптоволокне диаметр сердечника составляет 50 мкм, что примерно равно толщине человеческого волоса. Сердечник в одномодовом волокне имеет диаметр от 8 до 10 мкм.

-2

Сердечник покрыт слоем стекла с более низким, чем у сердечника, коэффициентом преломления. Он предназначен для более надежного предотвращения выхода света за пределы сердечника. Внешним слоем служит пластиковая оболочка, защищающая остекление. Оптоволоконные жилы обычно группируются в пучки, защищенные внешней оболочкой. На рисунке 2 показан трехжильный кабель.

Обычно кабели кладутся в грунт на глубину около метра, где их могут случай­но повредить грызуны или экскаватор. У побережья трансокеанические кабели укладываются в траншеи специальным механизмом. На большой глубине их обычно просто кладут на дно, где их могут зацепить рыболовные траулеры или перегрызть акулы.

Соединение отрезков кабеля может осуществляться тремя способами. Во-первых, на конец кабеля может прикрепляться специальный разъем, с помощью которого кабель вставляется в оптическую розетку. Подобное соединение приводит к потере 10-20 % силы света, зато оно позволяет легко изменить конфигурацию системы.

В гонке компьютеров и средств связи у последних еще есть шанс на победу — благодаря волоконной оптике. Если это произойдет, то в мире появится не только совершенно новое понятие о почти бесконечной полосе пропуска­ния, но и неслыханная доселе идея о том, что все компьютеры безнадежно медленны и сетям следует любой ценой избегать вычислений, независимо от того, какая часть полосы пропускания при этом будет потеряна. Необходимо время, чтобы изменения впитались в умы поколений ученых-компьютерщиков и инженеров, приученных ду­мать в терминах низкоскоростных медных линий и ограничений, сформулированных Шенноном.

-3

Конечно, в этом представлении не хватает одной немаловажной детали: стоимо­сти. Затраты на прокладку оптоволокна до компьютера каждого пользователя, чтобы обойти характерные для проводов ограничения — низкую полосу пропускания и не­большой диапазон частот, — попросту огромны. Помимо этого, на пересылку битов тратится больше энергии, чем на вычисления. Всегда будут существовать островки неравенства, в которых стоимость либо вычислений, либо пересылки данных будет приближаться к нулю. Например, перед тем как выйти в Интернет, мы применяем все имеющиеся вычислительные возможности и расходуем место на диске, чтобы решить проблему сжатия и кэширования содержимого — все для того, чтобы наибо­лее эффективно воспользоваться доступом к Всемирной сети. В Интернете же может происходить обратное

. Такие компании, как Google, перемещают по сети огромные объемы данных, сбрасывая их туда, где хранение и обработка будут стоить дешевле.

-4

Оптоволокно используется для пересылки информации на очень большие рассто­яния цо сетевым магистральным соединениям, внутри высокоскоростных локальных сетей (хотя пока что ему не удается достаточно далеко уйти вперед от медных про­водов) и для высокоэффективного доступа в Интернет, например, по технологии FTTH (Fiber to the Home волокно прямо к дому). Оптоволоконная система пере­дачи данных состоит из трех основных компонентов: источника света, носителя, по которому распространяется световой сигнал, и приемника сигнала, или детектора. Световой импульс принимают за единицу, а отсутствие импульса — за ноль. Свет распространяется в сверхтонком стеклянном волокне. При попадании на него света детектор генерирует электрический импульс. Присоединив к одному концу оптиче­ского волокна источник света, а к другому — детектор, мы получим однонаправленную систему передачи данных. Система принимает электрические сигналы и преобразует их в световые импульсы, передающиеся по волокну. На другой стороне происходит обратное преобразование в электрические сигналы.

-5

Во-вторых, они могут механически сращиваться — два аккуратно отрезанных конца кабеля укладываются рядом друг с другом и зажимаются специальной муфтой. Улучшение прохождения света достигается выравниванием концов кабеля. При этом через соединение пропускается свет, и задачей является добиться максимального соответствия мощности выходного сигнала мощности входного. Одно механическое сращивание кабелей занимает у опытного монтажника сетей около 5 минут и дает в результате потерю 10 % мощности света.

В-третьих, два куска кабеля могут быть сплавлены вместе. Сплавное соединение почти так же хорошо, как и сплошной кабель, но даже при таком методе происходит небольшое уменьшение мощности света.

Во всех трех типах соединений в точке соединения могут возникнуть отражения, и отраженный свет может интерферировать с сигналом.

Для передачи сигнала по оптоволоконному кабелю могут использоваться два типа источника света: светоизлучающие диоды (LED, Light Emitting Diode) и полупрово­дниковые лазеры. Они обладают различными свойствами, как показано в табл. 2.2. Их длина волны может быть настроена при помощи интерферометров Фабри Перо (Fabry—Perot) или Маха—Цандера (Mach—Zehnder), устанавливаемых между ис­точником и кабелем. Интерферометры Фабри—Перо представляют собой простые резонансные углубления, состоящие из двух параллельных зеркал. Свет падает перпендикулярно зеркалам, углубление отбирает те длины волн, которые уклады­ваются в его размер целое число раз. Интерферометры Маха Цандера разделяют свет на два луча, которые проходят различное расстояние и снова соединяются на выходе. Синфазными на выходе интерферометра окажутся лучи строго определенной длины.