Найти тему
СкопусБукинг

Индонезийский журнал в Скопус, третий квартиль (экологическая технология), International Journal of Renewable Energy Development

Уважаемые коллеги, доброго времени суток! Представляем вам индонезийское научное издание International Journal of Renewable Energy Development. Журнал имеет третий квартиль, издаётся в Diponegoro university Indonesia - Center of Biomass and Renewable Energy (CBIORE), находится в открытом доступе, его SJR за 2021 г. равен 0,351, импакт-фактор - 0,737, электронный ISSN - 2252-4940, предметные области - Экологическая технология, Возобновляемая энергия и окружающая среда, Энергетика и энерготехнология. Вот так выглядит обложка:

Редактором является Хади Хадиянто, контактные данные -hadiyanto@live.undip.ac.id, ijred@live.undip.ac.id.

-2

Тематика журнала охватывает следующие области:

- Преобразование фотоэлектрических технологий;

- Применение солнечной энергии;

- Преобразование биомассы;

- Технологии ветроэнергетики;

- Технологии материаловедения;

- Солнечная и низкоэнергетическая архитектура;

- Энергосбережение в зданиях;

- Климатология и метеорология (геотермальная энергия, волны и приливы, тепловая энергия океана, мини-гидроэнергетика и технология производства водорода);

- Энергетическая политика;

- Социально-экономическая и энергоэффективность и управление.

Адрес издания - https://ejournal.undip.ac.id/index.php/ijred/index

Пример статьи, название - Artificial Neural Network Prediction Model of Dust Effect on Photovoltaic Performance for Residential applications: Malaysia Case Study. Заголовок (Abstract) - Dust accumulation on the photovoltaic system adversely degrades its power conversion efficiency (PCE). Focusing on residential installations, dust accumulation on PV modules installed in tropical regions may be vulnerable due to lower inclination angles and rainfall that encourage dust settlement on PV surfaces. However, most related studies in the tropics are concerned with studies in the laboratory, where dust collection is not from the actual field, and an accurate performance prediction model is impossible to obtain. This paper investigates the dust-related degradation in the PV output performance based on the developed Artificial Neural Network (ANN) predictive model. For this purpose, two identical monocrystalline modules of 120 Wp were tested and assessed under real operating conditions in Melaka, Malaysia (2.1896° N, 102.2501° E), of which one module was dust-free (clean). At the same time, the other was left uncleaned (dusty) for one month. The experimental datasets were divided into three sets: the first set was used for training and testing purposes, while the second and third, namely Data 2 and Data 3, were used for validating the proposed ANN model. The accuracy study shows that the predicted data using the ANN model and the experimentally acquired data are in good agreement, with MAE and RMSE for the cleaned PV module are as low as 1.28 °C, and 1.96 °C respectively for Data 2 and 3.93 °C and 4.92 °C respectively for Data 3.  Meanwhile, the RMSE and MAE for the dusty PV module are 1.53°C and 2.82 °C respectively for Data 2 and 4.13 °C and 5.26 °C for Data 3. The ANN predictive model was then used for yield forecasting in a residential installation and found that the clean PV system provides a 7.29 % higher yield than a dusty system. The proposed ANN model is beneficial for PV system installers to assess and anticipate the impacts of dust on the PV installation in cities with similar climatic conditions. Keywords: Dust effect; PV performance; ANN; Yield forecasting; Electrical output