Машинное обучение — это наука о том, как обучить искусственный интеллект работать самостоятельно и расширять свои знания о мире, чтобы точнее и лучше выполнять возложенные на него функции. Отчасти это похоже на процесс обучения младенца, который учится самостоятельно классифицировать объекты и события, определять взаимосвязи между ними.
От обычных вычислительных программ машинное обучение отличается тем, что программист не задаёт алгоритм, по которому работает программа, а компьютер сам выбирает методы решения поставленных задач и учится на собственных ошибках.
Уже сейчас бизнес Facebook во многом полагается на технологии машинного обучения и искусственный интеллект — пусть даже это не всегда афишируется.
Нам только кажется, что машинное обучение может в точности повторить алгоритмы человеческого мышления, но пока между ними больше разницы, чем между птицами и самолётами.
Нюансы
Есть различные виды машинного обучения:
- с учителем (программист заранее размечает структурированные данные: например, помечает все фотографии, на которых изображены кошки);
- неконтролируемое (на немаркированных данных: например, рекомендации на основе ранее совершённых покупок);
- обучение с подкреплением (происходит в среде, которая определённым образом реагирует на действия программы: например, беспилотный автомобиль сталкивается с препятствием).
Критика
У машинного обучения есть целый ряд проблем и недостатков:
- решения компьютера непрозрачны для человека, так как непонятен алгоритм, на основе которого машина сделала вывод;
- компьютерные программы «наследуют» предрассудки и убеждения своих создателей, отбор данных может повлиять на конечный результат;
- машине недоступно решение сложных этических вопросов;
- компьютер может находить взаимосвязи там, где их нет, просто из-за отсутствия житейского опыта;
- рекомендации контента на основе интересов могут создавать вокруг пользователя информационный пузырь.
Практика
Машинное обучение уже применяется во всех сферах деятельности человека. Еще в 2017 году под управлением Стэнфордского университета был запущен новый индекс AI100 для отслеживания динамики в сфере ИИ. Согласно данным, полученным университетом, количество стартапов с 2000 по 2018 год выросло в 14 раз. Рассмотрим, в каких областях нас ждут технологические прорывы благодаря ML.
Робототехника
В будущем роботы станут самообучаться. К примеру, смогут работать над добычей полезных ископаемых — нефти, газа и других. Они смогут, например, изучать морские глубины, тушить пожары. Программисты могут самостоятельно не писать массивные и сложные программы, опасаясь допустить ошибку в коде. ИИ повлияет и на повышение качества частной жизни человека: у нас уже есть беспилотные автомобили, роботы-пылесосы, трекеры сна, физической активности и здоровья и прочие продукты интернета поведения.
Маркетинг
Самый наглядный пример использования машинного обучения в маркетинге — поисковые системы Google и Яндекс, которые с его помощью контролируют релевантность рекламных объявлений.Социальные сети FaceBook, ВКонтакте и другие применяют собственные аналитические машины для исследования интересов пользователей и совершенствования персонализации новостной ленты.Маркетинговые исследования, предваряющие разработку и релиз продуктов компании, станут проще с точки зрения реализации, а итоговые данные будут более точными. Выделение кластеров в группах со схожими параметрами превратит кастомизированные предложения в реальность — можно будет решать задачи не групп потребителей, а каждого в отдельности.
Безопасность
Современную сферу обеспечения безопасности невозможно представить без машинного обучения. Системы распознавания лиц в метро и использование камер, сканирующих лица и номера машин при движении по автодорогам, стали неотъемлемой частью человеческой жизни и незаменимыми помощниками для полиции в поиске преступников и потерявшихся людей.
Финансовый сектор и страхование
Более точные биржевые прогнозы и оценка капитализации брендов, решения о выдаче кредитных продуктов частным лицам и предприятиям, определение стоимости и целесообразности страховки и даже снижение очередей в офисах при параллельном сокращении издержек на персонал — только часть возможностей, которые станут доступны в этой сфере.
Общественное питание
На основе Big Data разрабатываются специальные предложения для гостей с учетом загрузки посадочных мест в ресторанах и кафе, функционируют сервисы по
Воронежская пивоварня Brewlok и разработчики из NewShift решили использовать возможности Big Data для разработки рецепта идеального пива. На протяжении месяца они собирали отзывы и выделяли критерии оценки вкуса, аромата и цвета. На основе полученных данных из почти двух с половиной тысяч отзывов аналитики сформулировали описание «идеального пива», которое легло в основу рецепта.
Медицина
В медицинских учреждениях машинное обучение позволяет быстро обрабатывать данные пациента, производить предварительную диагностику и подобрать индивидуальное лечение, опираясь на сведения о заболеваниях пациента из базы данных. ML также позволяет автоматически выделять группы риска при появлении новых штаммов вирусных заболеваний.
Добыча полезных ископаемых
Анализ почвы доказывает или опровергает наличие полезных ископаемых, помогает очертить площадь будущей разработки.
Технологии машинного обучения уже стали частью повседневной жизни, при этом количество стартапов и продуктов на основе машинного обучения активно растет. Будучи причиной технологических революций в некоторых сферах экономики, ML способно быть драйвером в масштабах бизнеса и государств. Сегодня самое время задуматься об интеграции машинного обучения в бизнес-процессы, чтобы не утратить конкурентоспособность.
Подпишитесь на мой канал, потому что здесь полезная и интересная информация о праве, Вам точно не будет скучно.
#машинноеобучение #нейросети #искусственныйинтеллеки #алгоритм #ИТ #IT #мошенничество #machinelearning #глубокоеобучение #ML