Теперь мы должны вернуться назад, к 1920 году, когда вся проблема прочностидовольно основательно подзавязла. В то время А.А. Гриффитс (1893–1963),молодой сотрудник Авиационного исследовательного центра в Фарнборо, носилсяс идеями, которые шли вразрез с традициями и противостояли скучной обыденностиработ над материалами. Но, к сожалению, всерьез их никто не воспринимал.А Гриффитс ставил очень интересные вопросы. Почему столь велика разницав прочности различных тел? Почему прочность всех тел не одинакова? Почемувообще материалы имеют какую-то прочность? Почему бы им не быть прочнее?По крайней мере, сколь прочными они "обязаны" быть? До сравнительно недавнеговремени все эти вопросы считались либо непостижимыми, либо несостоятельными,либо принадлежащими глупцам.
Теперь-то мы знаем в общих чертах, какой должна быть прочность любогоматериала и почему далеко не всегда она достигается на практике. Болеетого, нам в какой-то мере известно, что нужно делать, чтобы повысить прочностьматериала. Этими знаниями мы прямо или косвенно обязаны Гриффитсу. Нижев сокращенном и несколько видоизмененном виде я приведу его основные идеи.
Прежде всего мы должны уметь обращаться с понятием энергии, котораяпредставляет собой способность совершать работу. Энергия имеет размерностьсилы, умноженной на расстояние. Так, если я поднимаю груз весом 2 кг навысоту 1,5 м, то я увеличиваю его потенциальную энергию на 3 кгм. Эта энергия(она исходит от моего обеда, который в свою очередь исходит от солнца,и т.д.) может быть преобразована в любую из форм энергии, но не можетбыть уничтожена. Потенциальная энергия представляет собой очень удобныйспособ "консервирования" энергии. Когда это потребуется, она может пройтичерез различные последовательные преобразования из одной формы в другую.Эти переходы могут быть очень наглядными, при этом может быть рассчитанбаланс энергии.
Накопленная, или потенциальная, энергия поднятого груза прежде использовалась,например, для привода настенных часов. Сейчас в большинстве часовых механизмовзапас энергии содержится в пружине. Выбор способа накопления энергии - всеголишь вопрос удобства, а не принципа[21]. Энергия деформированного телаочень напоминает энергию поднятого груза, следует лишь иметь в виду, что впроцессе деформирования сила изменяется, в то время как вес практически независит от высоты подъема, если она, конечно, не слишком велика. Согласнозакону Гука при деформации напряжение в материале растет линейно.Следовательно, если исходное напряжение было равно нулю, то энергия деформациив единице объема выражается формулой 1/2·(Напряжение·Деформация)
То, что энергия деформации вполне обычная тривиальная вещь, отличнодемонстрируется стрелками-лучниками. Между прочим, поэтому следует держатьсяв стороне от натянутых тросов. Кинетическая энергия причаленного судна,то есть энергия движения судна, качающегося на волнах у причала, преобразуетсяв энергию деформации чалки. Если чалка обрывается, то эта энергия переходитв кинетическую энергию каната, которая может оказаться слишком большойдля стоящего на ее пути человека.
Следовательно, все тела в нагруженном состоянии обладают энергией деформации,и эта энергия тем или иным способом может быть преобразована в любую другуюформу энергии, чаще всего - в тепло. Но дети всегда ухитряются узнать,что энергию растянутой резины можно использовать для разрушения, напримерстекла. Не знаю, может быть, именно такие ассоциации привели Гриффитсак мысли о разрушении как об энергетическом процессе.
Когда разрушается хрупкий материал, в области разрушения образуютсядве новые поверхности, которые до этого не существовали, и идея Гриффитсазаключалась в том, что нужно связать энергию новых поверхностей с энергиейдеформации тела перед разрушением. Теперь давайте разберемся, что же такоеповерхностная энергия. Мы знаем, что энергия имеет много форм - тепловая,электрическая, энергия деформации и т.д., - но то, что поверхность твердоготела обладает энергией только в силу самого существования своего как поверхности,- это становится ясно не сразу.
Наблюдая дождевые капли, пузыри, насекомых, шагающих по поверхностиводы, мы легко приходим к выводу, что вода, как и другие жидкости, имеетповерхностное натяжение. Поверхностное натяжение - это совершенно реальнаяфизическая сила, которая может быть измерена без особого труда. Следовательно,если площадь поверхности жидкости увеличивается, то производится работапо преодолению этой силы, и энергия накапливается в новой поверхности.Подсчитывая баланс энергии, мы должны учитывать поверхностную энергию также, как и другие виды энергии. Например, когда комар садится на воду, поверхностьпрогибается под его лапками; следовательно, площадь поверхности и ее энергияувеличиваются. Комар проваливается до тех пор, пока увеличение поверхностнойэнергии воды не сравняется с уменьшением потенциальной энергии насекомого,дальше комар не тонет, и это его, наверное, вполне устраивает.
Жидкость стремится по возможности уменьшить свою поверхностную энергию.Кпримеру, тонкая струя жидкости из только что закрытого крана, достигнувопределенного диаметра, непременно разобьется на отдельные капли с меньшейповерхностной энергией. Когда жидкость замерзает, молекулярный характер ееповерхности изменяется мало, и энергия поверхности сохраняется, хотяповерхностное натяжение уже не в силах изменить форму твердой частицы, округливее подобно капле. В большинстве твердых тел межатомные связи прочнее и жестче,чем в обычных жидкостях, соответственно и величины поверхностной энергии у нихв 10–20 раз выше[22]. Незамечаем же мы поверхностного натяжения в твердых телах не потому, что онослабое, а потому, что твердые тела слишком жестки, чтобы их форма заметноискажалась силами поверхностного натяжения.
Теперь, подобно тому, как мы стали бы вычислять вес самого большого комара,способного шагать по данной жидкости, попытаемся определить, сколь прочнымдолжен быть тот или иной материал. Начав эти расчеты, основанные на вышесказанном,мы с удивлением обнаружим, что они очень простые.
Попробуем найти напряжение, которое необходимо для разделения в объемематериала двух примыкающих один к другому атомных слоев. Пока нам безразлично,какой материал рассматривать, кристаллический или аморфный. По существувсе, что нам нужно знать, - это величины модуля Юнга и поверхностной энергии.
Итак, положим, что два слоя атомов вначале находятся на расстоянии x смодин от другого, тогда энергия деформации на квадратный сантиметр принапряжении σ и деформации ε может быть найдена следующим образом:1/2·(Напряжение·Деформация·Объем)=1/σεx Но по закону Гука E=σε, то естьε= σ/ E.
Заменяя в первом равенстве εчерез σ/ Е, получимЭнергия деформации на квадратный сантиметр = σ2x/2E.
Если G есть поверхностная энергия твердого тела на 1 см2,то общая энергия двух поверхностей, образовавшихся при разрушении, будет2G на 1 см2.
Теперь предположим, что по достижении нашей теоретической прочностиа, вся энергия деформации в объеме между двумя слоями атомов переходитв поверхностную энергию, то естьσ*2x/2E = 2GОтсюдаσ*= (GE/x)1/2.
Правда, мы немного завысили теоретическую прочность, так как предполагали,что материал подчиняется закону Гука вплоть до разрушения. Ведь в предыдущейглаве мы видели, что закон Гука верен лишь для малых деформаций, а прибольших деформациях кривая зависимости межатомной силы от деформации отклоняетсявниз от прямой. Поэтому энергия деформации будет меньше найденной намиэнергии, грубо говоря, вдвое. Чтобы учесть это, мы просто опустим двойкув выведенной нами формуле, имея в виду, что мы не претендовали на получениеточной величины прочности. Следовательно, правдоподобную оценку прочностиматериала должно давать выражениеσ*= 2(GE/x)1/2проще которого едва ли что можно придумать.