Найти в Дзене

Что такое индуктивная и ёмкостная нагрузка

Оглавление

Если бы вся нагрузка была резистивной (нагреватели, лампы накаливания и прочее), то весь ток, протекающий в электросети, совершал какую-то полезную работу. На практике это не так —многие потребители электрической энергии имеют индуктивный, а реже и ёмкостный характер. Это приводит к повышению нагрузки на сеть из-за реактивной мощности. О том что это такое и откуда берётся и пойдет речь в статье.

Активная и реактивная мощность

Счетчик активной энергии
Счетчик активной энергии

Если вся электрическая энергия, которую потребляет какой-либо прибор, преобразуется в другие виды энергии и совершает какую-либо работу, то мощность, потребляемая этим прибором, называется активной. Такой характер потребления у простых приборов, таких как резисторы, ТЭНы и нагревательные спирали, лампы накаливания. Обобщенно они называются активной нагрузкой, а энергия, которая к ним поступает рассеивается в виде тепла, света (и не только). Именно её учитывают потребительские электросчетчики в домах и квартирах, и именно за неё мы платим.

Если же в процессе работы через нагрузку протекает ток и на ней падает какое-то напряжение, но при этом она не рассеивает мощность, не преобразовывает электрическую энергию в другие её виды и не совершает никакой работы, то эта «не израсходованная» мощность называется реактивной. Примером чистой реактивной нагрузки могут служить катушки индуктивности и конденсаторы. Так реактивная нагрузка делится на два типа — индуктивная и ёмкостная. Потребление такой мощности приводит только к потерям на нагрев проводов от источника к потребителю и не передается в нагрузку.

Если же нагрузка рассеивает или преобразовывает лишь часть электрической энергии, а часть возвращает в сеть, то её называют смешанной. Большая часть реальных потребителей имеют смешанный характер — активно-индуктивный или активно-ёмкостный.

Полной мощностью называется сумма активной и реактивной мощностей.

ВАЖНО! Индуктивная и ёмкостная нагрузка приводит к возникновению реактивной энергии только в цепях переменного тока. Всё сказанное в этой статье справедливой для цепей переменного синусоидального тока, то есть для всех электросетей.
В цепях постоянного тока понятие реактивной мощности отсутствует, а мгновенные и средние значения мощности за определённый период времени всегда совпадают. В цепи переменного тока такое бывает только с лампами накаливания, нагревателями и другими чисто активными потребителями.

Индуктивная и ёмкостная нагрузка

Основная часть потребителей электрической энергии — это активно-индуктивная нагрузка, к ней относятся электродвигатели, реле и контакторы, различные соленоиды.

Индуктивная нагрузка — это такая нагрузка ток, в которой отстаёт от напряжения на четверть периода. В индуктивности энергия источника преобразуется в энергию магнитного поля. Рассмотрим подробнее процесс протекания тока в индуктивности.

-2

На графике изображён один период, разделенный на четыре части, конец каждой четверти пронумерован цифрами от 1 до 4. На нём четко видно, что напряжение опережает ток на четверть периода или на 90 градусов. Разберем каждую из четвертей периода:

  1. Энергия источника затрачивается на создание магнитного поля тока через катушку. Напряжение на выводах катушки в первый момент времени максимально, а ток минимален и возрастает. Скорость роста тока замедляется вплоть до нуля к концу первой началу четверти периода. При этом значение силы тока через катушку максимально.
  2. Энергия, накопленная в магнитном поле катушки, будет возвращаться к источнику. При этом в начале второй четверти напряжение на выводах катушки минимально, а сила тока через неё максимальна. В течение второй четверти периода ток в катушке снижается, сначала плавно и ускоряется к концу четверти. К тому же времени напряжение на выводах катушки имеет противоположную полярность относительно начала периода.
  3. В третей четверти периода катушка намагничивается противоположной полярностью (относительно первой четверти периода).
  4. Индуктивность возвращает энергию магнитного поля обратно в сеть.

В течение следующего периода цикл повторится. Так ведет себя чисто индуктивная нагрузка в цепи синусоидального переменного тока. То же самое можно проиллюстрировать с помощью векторной диаграммы

Ток и напряжение в индуктивности: а) схема условного участка цепи с идеальной индуктивностью, б) синусоиды тока и напряжения, в) векторная диаграмма.
Ток и напряжение в индуктивности: а) схема условного участка цепи с идеальной индуктивностью, б) синусоиды тока и напряжения, в) векторная диаграмма.
В реальности напряжение не будет опережать ток на 90 градусов. Так происходит только в идеальной индуктивности, у реальной катушки будет активное сопротивление, часть электрической энергии преобразуется и выделится на обмотке в виде тепла.
Наглядная иллюстрация тока и напряжения и сравнение графика с векторной диаграммой.
Наглядная иллюстрация тока и напряжения и сравнение графика с векторной диаграммой.
Батареи конденсаторов для компенсации реактивной мощности
Батареи конденсаторов для компенсации реактивной мощности

Ёмкостная нагрузка — это такая нагрузка ток, в которой опережает напряжение на четверть периода. Примеры ёмкостной нагрузки: длинные кабельные линии, ЛЭП высокого напряжения, конденсаторные батареи (компенсаторы реактивной мощности), синхронные двигатели.

Последние хоть и, как и все двигатели, представляют собой катушки индуктивности, но из-за особенностей процессов протекающих в них в режиме с повышенным током возбуждения ведут себя как ёмкостная нагрузка.

Рассмотрим график напряжения и тока в цепи с ёмкостью.

-6

Он, как и в предыдущем примере период разделен на 4 четверти:

  1. Энергия источника расходуется на создание электрического поля между пластинами конденсатора и его заряд.
  2. Между обкладками конденсатора накопилась энергия электрического поля и в течение второй четверти периода она возвращается к источнику.
  3. Конденсатор перезаряжается, то есть на его обкладках накапливается заряд противоположной полярности (относительно первой четверти периода).
  4. В последней четверти периода конденсатор вновь отдаёт накопленную энергию электрического поля обратно источнику питания — в электрическую сеть. Этот цикл повторяется в течение каждого периода.

Отобразим это в векторной диаграмме:

Ток и напряжение в ёмкости: а) схема условного участка цепи с идеальным конденсатором (ёмкостью), б) синусоиды тока и напряжения, в) векторная диаграмма.
Ток и напряжение в ёмкости: а) схема условного участка цепи с идеальным конденсатором (ёмкостью), б) синусоиды тока и напряжения, в) векторная диаграмма.

Как вы можете видеть, на векторной диаграмме вектор напряжения направлен «вниз», тогда как диаграмме с индуктивной нагрузкой его рисовали «вверх», так графически обозначается куда сдвинута одна величина относительно другой.

Анимация переменного тока и напряжения и процесса заряда/разряда конденсатора
Анимация переменного тока и напряжения и процесса заряда/разряда конденсатора

Как отмечалось выше, у реальных приборов редко бывает только индуктивный или ёмкостный характер, обычно они активно-индуктивные или активно-емкостные. У любого компонента электрической цепи будут и ёмкостные, и индуктивные составляющие в каком-либо соотношении, но это тема для отдельной статьи, если вам интересно — пишите об этом в комментариях и мы обязательно напишем её. Поэтому у того же двигателя, например, ток от напряжения будет отставать не на 90 градусов, а меньше, к тому же соотношение активной и реактивной мощности у них изменяется в зависимости от нагрузки.

Схемы и векторные диаграммы цепей с индуктивным XL, ёмкостным Хс и активным R сопротивлениями: а - последовательное соединение; б - параллельное соединение
Схемы и векторные диаграммы цепей с индуктивным XL, ёмкостным Хс и активным R сопротивлениями: а - последовательное соединение; б - параллельное соединение

Как используется на практике

Если бы вся нагрузка была активной, то у потребителя коэффициент мощности был равен единице. В реальности наличие реактивных составляющих снижает коэффициент мощности.

Коэффициент мощности — это отношение активной энергии к полной. Чем он ближе к единице, тем больше активной и меньше реактивной мощности потребляется.

Зачастую самые многочисленные потребители электрической энергии — это электродвигатели, поэтому у реактивной мощности индуктивный характер. Производства оплачивают не только потребляемую активную мощность, но и реактивную, чтобы снизить расходы на оплату электроэнергии и нагрузку на сеть нужно компенсировать реактивную мощность, другими словами, повысить коэффициент мощности.

Как мы уже знаем, индуктивная нагрузка приводит к тому, что ток отстает от напряжения, а у ёмкостной нагрузки, наоборот, ток опережает напряжение. Это явление используют для компенсации реактивной мощности, а такие устройства называют компенсаторами реактивной мощности (УКРМ), в простейшем виде представляют собой нерегулируемые конденсаторные батареи, которые подключаются к питающему предприятие трансформатору или шинам РУ.

УКРМ
УКРМ

Для компенсации реактивной мощности конкретного двигателя просто подключают конденсаторы и устанавливают их рядом с этим двигателем.

Двигатель с малой нагрузкой на валу, соотношение активного и реактивного токов, с использованием компенсирующего конденсатора и без него
Двигатель с малой нагрузкой на валу, соотношение активного и реактивного токов, с использованием компенсирующего конденсатора и без него

Всё то же самое только проще и короче

Проведем некую аналогию, для большего понимания того, что такое индуктивная и ёмкостная нагрузка.

Представьте пружину, вы нажимаете на неё пальцем, та сопротивляется сжатию, но когда палец начнете плавно поднимать вверх, то пружина толкает его, помогая движению. А если резко отпустите пружину — то она расправится и подпрыгнет.

-12

Это аналогия для катушки индуктивности, она сначала сопротивляется электрическому току, а когда тот уменьшается стремиться поддерживать его протекание в том же направлении. При резком размыкании цепи напряжение на выводах катушки будет повышаться до тех пор, пока энергия, накопленная в катушке, не рассеется на чем-либо, например, пробивает воздушный промежуток между контактами и возникает дуга при отключении цепи.

В цепи переменного и постоянного тока катушки ведут себя похоже. Но так как переменный ток циклично изменяется по величине и полярности, то катушки препятствуют его изменению, возникает сдвиг фазы и реактивное сопротивление (подробно о реактивном сопротивлении вы можете почитать вот здесь).

Лампочки включаются через катушку и через реостат. Обратите внимание, что ток через катушку отстаёт от напряжение, и лампа зажигается позже чем та, что подключена через реостат.
Лампочки включаются через катушку и через реостат. Обратите внимание, что ток через катушку отстаёт от напряжение, и лампа зажигается позже чем та, что подключена через реостат.

В цепи постоянного тока индуктивность препятствуя изменению тока сглаживает его пульсации. Например, при подаче напряжение она замедляет его возрастание.

-14

Теперь возьмем пустую ёмкость, в которую можно набрать воду, отверстие через которое поступает вода будет перекрываться поплавковым клапаном (как на бочке унитаза). Сначала набор воды будет максимальным, и по мере наполнения ёмкости, уровень воды будет подниматься, поднимая и поплавок. Поплавок будет плавно перекрывать отверстие, откуда поступает вода и напор воды будет уменьшаться пока отверстие полностью не перекроет.

После того как ёмкость наполнена, мы можем перекрыть провод, а вода из неё никуда не уйдет. При этом мы можем использовать её в каких-либо целях.

Это аналогия для конденсатора (ёмкости), при подключении к источнику постоянного тока он быстро заряжается, и в первый момент времени, если ток ничем не ограничен, то его сила будет очень большой. Разряженный конденсатор представляет собой эквивалент короткозамкнутого участка цепи. По мере заряда ток будет снижаться, на обкладках конденсатора накопятся заряды, которые будут удерживаться энергией электрического поля. После отключения от источника заряд с обкладок никуда не денется, и если конденсатор стоял параллельно какой-то нагрузке, то после отключения питания он её продолжит питать какое-то время (которое зависит от сопротивления нагрузки и ёмкости конденсатора).

Однако если конденсатор стоит последовательно с какой-то нагрузкой или вообще единственный элемент в цепи постоянного тока, то, когда он зарядится полностью – в цепи перестанет протекать ток. В цепи переменного тока конденсатор представляет пропускает ток так, как циклично перезаряжается из одной полярности в другую, при этом из-за описанных выше явлений происходит сдвиг фазы тока на 90 градусов в сторону опережения напряжения, а также препятствует протеканию тока из-за своего реактивного сопротивления.

Ну и наконец, немного юмора.

-15