Если ударить по камертону и прижать его к поверхности стола, максимальная частота излучаемого звука удваивается. Такое загадочное поведение сбивает многих людей с толку. В этой заметке мы раскроем эту «тайну» с помощью численного моделирования, а также расскажем некоторые интересные факты о камертонах.
"Загадочное" поведение камертона
В недавнем видео, вышедшем на YouTube-канале standupmaths, популяризаторы науки Matt Parker и Hugh Hunt обсуждали и демонстрировали подобный феномен камертона. Когда вы ударяете по камертону и прижимаете его к поверхности стола, кажется, что частота удваивается. Как оказалось, объяснение этой загадки можно свести к задаче о нелинейной механике твёрдого тела.
Как звук достигает наших ушей?
Когда вы держите в руках "работающий" камертон, вибрация ножек приводит к колебанию воздуха вокруг них. Волны давления распространяются в воздухе в виде звука. Вы можете их даже услышать, однако такое преобразование механических вибраций в акустическое давление не очень эффективно.
Когда вы прикладываете стержень камертона к столу, его аксиальные колебания передаются на поверхность. Эти колебания гораздо меньше, чем поперечное движение ножек, однако плоская поверхность стола является намного более эффективным излучателем звука, нежели тонкие ножки камертона. В данном случае поверхность стола будет выступать в роли большой диафрагмы громкоговорителя.
Для исследования этого интересного явления мы создали численную модель для вибрационного анализа камертона. Модель воссоздает камертон, который один из моих коллег хранит у себя в сумке. Тон устройства соответствует эталонной ноте "ля" первой октавы (A4, 440 Hz), материал — нержавеющая сталь, общая длина порядка 12 см.
Для начала давайте взглянем на смещения в камертона на первой собственной моде:
Если мы подробней посмотрим на возникающие смещения, то увидим, что, хотя основное движение ножек происходит в поперечном направлении (в направлении оси x на изображении выше), присутствуют также и небольшие вертикальные смещения (в направлении оси z), которые состоят из двух частей:
- Изгиб ножек сопровождается движением вверх-вниз, которое линейно изменяется по поперечному сечению ножки
- Стержень камертона в основном совершает жёсткое аксиальное смещение, которое необходимо для удержания центра масс в фиксированном положении по второму закону Ньютона
Смещения визуализированы на рисунке ниже. Мода нормирована, так что максимальное общее смещение равно 1. Максимальное аксиальное смещение равно 0.03, смещение в стержне составляет 0.01.
Теперь давайте перейдём к моделированию излучения звука. Для того, чтобы рассчитать уровень звукового давления в окружающем воздухе, проведен расчет связанных акустических процессов на основе метода граничных элементов. Амплитуду вибраций на краях ножек укажем равной 1 мм. Это примерное максимально допустимое значения для камертона, чтобы он не был перегружен возникающими механическими напряжениями.
Как видно из рисунка ниже, интенсивность звука быстро уменьшается по мере удаления от камертона, а также имеет высокую степень направленности. На самом деле: если вы повернёте камертон вокруг своей оси на 45 градусов около уха, то вы ничего не услышите. Это действительно поражает!
Теперь добавим к модели деревянную поверхность стола толщиной 2 см. Длина и ширина равна 1 м. Стол закреплён на углах. Стержень камертона соприкасается со столом в центре. Как можно видеть из графика ниже, уровень звукового давления довольно высокий в большей части воздушной области над столом и за ним.
Для сравнения построим график уровня звукового давления для случая, когда стержень держут в воздухе. Как мы видим, разница довольна существенная. Уровень звукового давления стал очень низким, кроме области в непосредственной близи от камертона. Такое распределение соответствует опыту с камертонами, показанному в оригинальном видео на YouTube.
Является ли удвоенная частота собственной?
До сих пор мы не касались первоначального вопроса: Почему частота вибраций камертона, расположенного на столе, удваивается? Одним из возможных объяснений может быть то, что существует собственная частота, для которой основные смещения в основном происходят в вертикальном направлении. Например, для вибрирующей струны собственные частоты кратны основной частоте.
Однако, это не относится к камертону. Если ножки камертона представить в виде двух консольных изгибающихся балок, то самая низкая собственная частота будет определяться выражением
Список переменных в этом выражении:
- Длина ножки, L
- Модуль Юнга, E; обычно для стали равен порядка 200 ГПа
- Плотность материала, ρ; приблизительно 7800 кг/м3
- Осевой момент инерции для поперечного сечения ножки, I
- Площадь поперечного сечения ножки, A
Для нашего камертона это эмпирическое значение равно 435 Hz, следовательно формула довольно точная.
Вторая собственная частота консольной балки равна
Она в 6.27 раза больше, чем основная частота. Как мы видим, это не может стать причиной удвоения частоты. Однако, также существуют и другие формы мод, помимо симметричного изгиба. Может ли одна из них определять удвоение частоты?
Это маловероятно по двум причинам. Первая причина в том, что удвоение частоты наблюдается в камертонах различной формы. Было бы большим совпадением, если бы у всех них собственная мода была ровно вдвое больше основной собственной частоты. Вторая причина заключается в том, что несимметричные собственные моды имеют большое поперечное смещение в области стержня, где камертон удерживают. Таким образом, подобные собственные моды сильно бы затухали от прикосновения руки и имели бы маленькую амплитуду.
Вероятная причина «загадочного» поведения камертона
Давайте немного подытожим, что мы на данный момент знаем о феномене удвоения частоты. Так как данное явление происходит только тогда, когда мы прижимаем камертон к столу, вибрации на удвоенной частоте включают большое аксиальное смещение в стержне. Также, на основании данных спектроанализатора (вы можете скачать это приложение на свой телефон) можно сделать вывод, что уровень вибраций на двойной частоте относительно быстро угасает. Т.е. существует переход обратно к основной частоте.
Зависимость от амплитуды колебаний предполагает наличие нелинейностей. Аксиальное смещение стержня говорит о том, что он компенсирует изменение положения центра масс ножек.
Не вдаваясь в математические подробности, для изгибающейся консольной балки можно определить расстояние смещения центра масс вниз относительно первоначальной длины L по следующей формуле:
Здесь a — поперечное смещение края, коэффициент β ≈ 0.2.
Обратите внимание, что вертикальное смещение центра масс пропорционально квадрату амплитуды колебаний. Кроме этого, центр масс будет находится в нижнем положении дважды за один период (когда ножка изгибается внутрь и наружу), таким образом, частота удваивается.
При a = 1 мм и длине ножек L = 80 мм, максимальное смещение центра масс можно оценить по формуле
Масса стержня гораздо меньше, чем масса ножек, поэтому он должен смещаться ещё больше, чтобы общий центр тяжести оставался неподвижным. По формуле амплитуда колебаний стержня равна 0.005 мм. Эту величину можно сравнить с численными экспериментами, о которых мы рассказывали выше. Линейная (440 Гц) компонента аксиального смещения равна отношению a/100, в нашем примере — это 0.01 мм.
В реальности, камертон представляет из себя гораздо более сложную систему, чем обычная консольная балка. Область соединения стержня и ножек также будет влиять на результаты. Для нашего камертона амплитуда смещений второго порядка на самом деле будет меньше половины от рассчитанного приближённо значения 0.005 мм.
Тем не менее, амплитуда аксиального смещения, которое вызвано движением массы второго порядка, является значительной. Однако, если мы рассматриваем излучение звука, то нам важна скорость, а не смещение. Таким образом, если амплитуды смещения равны на частотах 440 Гц и 880 Гц, то скорость на двойной частоте будет в два раза больше, чем на основной.
Поскольку амплитуда аксиальных колебаний на частоте 440 Гц пропорциональна амплитуде смещения ножки а, а на частоте 880 Гц пропорциональна a2, необходимо ударить по камертону достаточно сильно, чтобы заметить эффект удвоения частоты. По мере затухания вибраций относительный вклад нелинейного члена уменьшается. Это хорошо видно на спектроанализаторе.
Данный процесс можно подробно проанализировать, выполнив динамический расчет во временной области с учетом геометрической нелинейности. Горизонтальные поверхности ножек возбуждаются симметричным импульсом и камертон начинает свободно вибрировать. По графику видно, что горизонтальные вибрации ножек почти синусоидальны на частоте 440 Гц, в то время как смещение стержня вверх и вниз явно нелинейно. Это происходит из-за того, что вклад компоненты смещения на частоте 440 Гц синхронен со смещением стержня, а на частоте 880 Гц — нет, таким образом, возникают дополнительные смещения вверх.
Из-за нелинейности системы вибрации периодичны не полностью. Даже амплитуда смещений ножек может изменяться от периода к периоду.
Если разложить смещение стержня в частотный спектр с помощью быстрого Фурье-преобразования (FFT), то мы увидим два главных пика на частотах 440 Гц и 880 Гц. Также есть небольшой третий пик в окрестности второй изгибной моды.
Чтобы реально увидеть вклад компоненты вибраций второго порядка на частоте 880 Гц, давайте вычтем компоненту вибраций стержня, которая синфазна вибрациям ножек камертона, из общего смещения стержня. На графике ниже это смещение изображено красной линией.
Как мы выполнили подобное преобразование? Из расчёта на собственные частоты мы получили значение амплитуды аксиального смещения стержня, которое равно примерно 1% от величины поперечного смещения ножек (если быть совсем точными то 0.92%). На графике выше пунктирная зелёная линия в 0.0092 раза больше, чем смещение на конце ножек (эта зависимость не показана на графике). Данную кривую можно рассматривать, как линейную компоненту на частоте 440 Гц, которая имеет более-менее гармоническую синусоидальную форму. Затем эта величина вычитается из общего смещения стержня и получается красная кривая. Данный график равен нулю в момент, когда ножки камертона не изогнуты, и дважды за период достигает своего амплитудного значения, когда ножки максимально изогнуты внутрь или наружу.
На самом деле, красная кривая очень похожа на график функции sin2(ωt). Как мы уже упоминали выше, так как это график смещения, он пропорционален квадрату смещения ножки. Используем известное тригонометрическое тождество и встречайте удвоенную частоту!
Различные камертоны
В комментах к оригинальному видео отметили, что некоторые камертоны работают лучше других, а в некоторых вообще трудно уловить явление удвоения частоты. Как уже говорилось выше, для начала необходимо достаточно сильно ударить по камертону, чтобы попасть в нелинейный режим. К тому же, различная геометрия будет влиять на соотношение амплитуд для двух видов вибраций.
К примеру, если масса ножек будет намного больше стержня, то это вызовет большие смещения удвоенной частоты, так как в этом случае стержень должен будет больше перемещаться, чтобы центр тяжести оставался неизменным. В камертоне с тонкими ножками будет большее соотношение амплитуды к длине (a/L), что приведёт к увеличению нелинейной компоненты.
Большое значение играет место крепления стержня к ножкам. Если оно жёсткое, то амплитуда вибраций на основной частоте в стержне будет меньше, а относительный вклад компоненты удвоенной частоты, наоборот, больше.
Также на вибрации сильно влияет поперечное сечение ножек. Если мы ещё раз посмотрим на выражение для расчёта собственной частоты
то видно, что она зависит от момента инерции поперечного сечения. Момент инерции ножки квадратного сечения с длиной ребра d можно оценить по формуле
Момент инерции ножки круглого сечения с диаметром d
Таким образом, для двух одинаковых при виде сбоку камертонов, тот, у которого ножки имеют квадратное сечение, должен быть длинней в 1.14 раз, чтобы их основная частота была одинаковой. Если взять одинаковое максимальное напряжение на изгиб для двух камертонов, тот, у которого ножки квадратного сечения, будет иметь амплитуду поперечных смещений в 1.142 больше, чем камертон с ножками круглого сечения, из-за более высокой способности выдерживать нагрузку. Кроме того, если размер стержня не изменяется, то общая масса камертона будет тем легче, чем длиннее будут ножки. Если сложить вклад всех этих случаев, то увеличение амплитуды вертикальной вибрации стержня увеличится примерно на 70% при переходе от круглого сечения ножки к квадратному.
Кроме того, у камертонов круглого сечения соединение между стержнем и ножками обычно более гибкое, что приводит к более высокому уровню вибраций на основной частоте.
Вывод из всего сказанного в том, что эффект удвоения частоты у камертона с квадратным сечением скорее всего будет более явно выражен.
Слышим ли мы удвоенную частоту?
В большинстве случаев ответ «нет». Основная частота всё так же существует, даже если она будет иметь более низкую амплитуду, чем удвоенная частота. Наши органы чувств работают таким образом, что мы будем слышать основную частоту, хоть и с другим тембром. Очень трудно, но не невозможно ударить по камертону таким образом, чтобы уровень звука двойной частоты был выше.
Заключение
Удвоение частоты происходит из-за нелинейного эффекта, когда стержень камертона должен двигаться вверх, чтобы компенсировать небольшое понижение центра масс ножек в момент, когда их амплитуда изгиба максимальна.
Обратите внимание, что стол не влияет на явление удвоения частоты. В данном случае стол выступает резонирующей поверхностью, которая усиливает аксиальные вибрации стержня. Если держать камертон в руке, то будет преобладать звук от вибраций изгибающихся ножек. В обоих случаях движение будет одинаковым, если мы не учитываем импеданс стола. Фактически, можно получить двойную частоту, просто держа камертон в руке, однако она будет на 30 dB ниже основной частоты (по амплитуде).
#наука #физика #технологии #программы #численные методы #fem #comsol