Найти тему
Иван Сычев

Помощники врачей: Обнаружить туберкулез

Корпорациям и промышленным предприятиям нужно решать прикладные задачи, а научным организациям — коммерциализировать свои разработки. Для связки между наукой и бизнесом была создана сеть Центров компетенций НТИ. Каждый из таких центров представляет собой консорциум, который включают в себя технологические компании, российские вузы, научные организации, иностранных партнеров.

Среди разработок Центра компетенций НТИ по направлению «Искусственный интеллект», организованного на базе Физтеха (МФТИ), есть система поддержки принятия врачебных решений в области флюорографии, маммографии, кардиографии с использованием поисковых систем и технологий глубокого машинного обучения. На данный момент создан экспериментальный образец системы.

По результатам испытаний, точность анализа составляет:

  • электрокардиографический модуль — 83%;
  • флюорографический модуль — 86%;
  • маммологический модуль — 81%.

Заказчиками платформы могут быть как частные медицинские и исследовательские организации, так и федеральные и местные образовательные и медицинские учреждения.

Фрагмент интерфейса СППВР. Фото: МФТИ
Фрагмент интерфейса СППВР. Фото: МФТИ

Центр компетенций НТИ по направлению «Технологии хранения и анализа больших данных» на базе МГУ имени М.В. Ломоносова разработал облачный сервис «АнтиКох». Сервис, который анализирует медицинские снимки с помощью ИИ, опубликован в облаке, поэтому доступ к нему имеют врачи всех уровней в России и за пределами страны.

Разработка Центра компетенций диагностирует туберкулез на КТ с точностью в 93% и постоянно учится благодаря использованию машинного обучения. Она анализирует флюорографию за 0,8 секунды, после чего выдает рекомендации с классификацией по вариантам заболевания.

Систему используют и для обнаружения симптомов COVID-19. Команда создала пилотный вариант облачного сервиса «АнтиКорона». Сервис обучают распознаванию болезни на рентгеновских снимках и флюорографии. Эти виды исследований дешевле и доступнее, чем КТ: обычно томографы стоят в крупных клиниках, а количество КТ-специалистов существенно ограничено.

Для обучения системы использовали размеченные рентгеновские изображения, полученные из клиник США и ориентированные на лечение больных коронавирусом. Разработчики получили положительные прогнозы о надёжности диагностики COVID-19 на основе флюорографических снимков, это актуально, потому что цифровыми флюорографами оснащены практически все лечебные учреждения России.

В московском референс-центре лучевой диагностики на базе Центра диагностики и телемедицины Департамента здравоохранения города Москвы и в 53 регионах России «АнтиКорона» используется для диагностики COVID-19, а «АнтиКох» — для диагностики туберкулеза. Только в московском референс-центре благодаря решению обработано более 250 000 медицинских изображений.

«Удельный вес успешно проанализированных исследований превышает 99% при следующих основных показателях: чувствительность — 94,0%, специфичность — 66,0%, точность — 80,0%, площадь под характеристической кривой — 90,0%, что превышает лучшие мировые показатели подобных систем», — рассказал Михаил Натензон, руководитель проекта «Облачные технологии обработки и интерпретации медицинских диагностических изображений на основе применения средств анализа больших данных» Центра компетенций НТИ по технологиям хранения и анализа больших данных на базе МГУ.

В пресс-службе АНО «Платформа НТИ» отметили, что проекты «АнтиКорона» и «АнтиКох» привлекли 14 млн рублей инвестиций.

Читайте также:

Источник