Сложение — простейшая арифметическая операция. Если мы хотим создать компьютер (а именно в этом заключается цель этой книги), сначала нужно найти способ создания устройства, складывающего два числа. По сути, компьютеры выполняют только операцию сложения. Если нам удастся сконструировать механизм, умеющий складывать, мы окажемся способны создать устройство, использующее операцию сложения для того, чтобы вычитать, умножать, делить, рассчитывать платежи по ипотеке, отправлять ракеты на Марс, играть в шахматы и вносить путаницу в наши телефонные счета.
Сумматор, который мы построим, будет большим, нескладным, медленным и шумным по сравнению с современными калькуляторами и компьютерами. Самое интересное заключается в том, что мы соберем эту машину из простых электрических устройств, о которых говорили в предыдущих главах, — переключателей, лампочек, проводов, батарейки и реле, объединенных в различные логические вентили. Этот сумматор будет состоять исключительно из деталей, которые уже были изобретены 120 лет назад. Особенно хорошо то, что нам не нужно ничего собирать в своей гостиной; вместо этого мы можем конструировать на бумаге и в уме.
Эта машина будет работать исключительно с двоичными числами, в ней будут отсутствовать некоторые современные функции. Вы не сможете использовать клавиатуру для ввода чисел, подлежащих сложению; вместо этого будет ряд переключателей. Роль дисплея для отображения результатов в этом сумматоре исполнит ряд лампочек.
Однако машина сумеет сложить два числа, и она сделает это фактически как компьютер.
Сложение двоичных чисел похоже на сложение десятичных. Если хотите сложить два десятичных числа, например 245 и 673, вы разбиваете задачу на более простые этапы. На каждом этапе складываете две десятичные цифры. В данном примере начинаете со сложения 5 и 3. Эта задача решается быстрее, если вы знаете таблицу сложения.
Большая разница между сложением десятичных и двоичных чисел заключается в том, что в случае с двоичными числами используется более простая таблица.
Если вы выросли среди дельфинов, вероятно, вы в школе учили эту таблицу, громко произнося:
0 плюс 0 равно 0,
0 плюс 1 равно 1,
1 плюс 0 равно 1,
1 плюс 1 равно 0, 1 в уме.
Вы можете добавить в эту таблицу нули так, чтобы каждый результат представлял 2-битное значение.
Таким образом, результатом сложения пары двоичных чисел являются два бита, которые называются разрядом суммы и разрядом переноса (1 плюс 1 равно 0, 1 в уме). Теперь мы можем разделить таблицу сложения двоичных чисел на две таблицы. Первая — для разряда суммы.
Вторая — для разряда переноса.
Сложение двоичных чисел удобно рассматривать так, поскольку наш сумматор выполняет операции суммирования и переноса отдельно. Для создания двоичного сумматора потребуется сконструировать схему, выполняющую эти операции. Работа исключительно в двоичной системе счисления значительно упрощает задачу, поскольку все части схемы — переключатели, лампочки и провода — могут представлять двоичные цифры.
Как и при сложении десятичных чисел, мы складываем двоичные числа столбец за столбцом, начиная с крайнего правого.
Обратите внимание: при сложении значений в третьем столбце справа 1 переносится в следующий столбец. Это происходит снова в шестом, седьмом и восьмом столбцах справа.
Какого размера двоичные числа мы хотим сложить? Поскольку мы создаем сумматор прямо в уме, то можем сделать так, чтобы он складывал очень длинные числа. Однако давайте будем благоразумными и ограничимся двоичными числами длиной до восьми бит, то есть будем складывать двоичные числа в диапазоне от 0000 0000 до 1111 1111 (десятичные от 0 до 255). Сумма двух 8-битных чисел может достигать двоичного значения 1 1111 1110 (десятичного значения 510).
Пульт управления нашим двоичным сумматором может выглядеть так.
На этом пульте есть два ряда по восемь переключателей. Этот набор переключателей — устройство ввода, которое мы будем использовать для ввода двух 8-битных значений. В этом устройстве выключенный переключатель (положение вниз) соответствует значению 0, а включенный (положение вверх) — 1, как в случае с настенными переключателями в вашем доме. Устройство вывода в нижней части пульта — ряд из девяти лампочек, которые отобразят результат сложения. Негорящая лампочка соответствует значению 0, горящая — 1. Нам требуется девять лампочек, поскольку сумма двух 8-битных чисел может быть 9-битным числом.
В остальном сумматор будет состоять из логических вентилей, соединенных различными способами. Переключатели будут активировать реле в логических вентилях, которые, в свою очередь, будут зажигать нужные лампочки. Например, если мы хотим сложить числа 0110 0101 и 1011 0110 (из предыдущего примера), включаем соответствующие переключатели.
Загоревшиеся лампочки показывают результат: 1 0001 1011. По крайней мере, мы на это надеемся. Мы ведь еще не собрали устройство!
В предыдущей главе я упомянул, что в этой книге буду использовать множество реле. Для 8-битного сумматора, который мы создаем, требуется не менее 144 реле — по восемнадцать для каждой из восьми пар битов, которые складываем. Если бы я показал готовую схему, вы бы наверняка испугались. Никому не под силу разобраться в схеме, состоящей из ста сорока четырех хитро соединенных реле. Вместо этого мы будем решать такую задачу поэтапно, используя логические вентили.
Возможно, вы сразу заметили связь между логическими вентилями и сложением двоичных чисел, когда увидели таблицу для разряда переноса, который возникает в результате сложения двух однобитных чисел.