Найти в Дзене

Влияние конструктивных элементов колеса и давления воздуха в шинах на опорную проходимость

Размер и конструкция колес в очень значительной степени определяют опорную проходимость. Опорной проходимостью автомобиля называют его способность двигаться по слабым деформируемым грунтам. Чем больше размер колеса при данной вертикальной нагрузке, тем больше его площадь контакта с опорной поверхностью, а следовательно, меньше удельное давление на грунт. Рассмотрим два колеса разных диаметров с шинами низкого давления (рис. 4). Величина внутреннего рабочего давления воздуха в них для твердых дорог при полной нагрузке назначается заводом-изготовителем, исходя из длительно допустимой величины деформации h шины в поперечном сечении, равной 10–12 % от высоты Н профиля. Площадь контакта шины с опорной поверхностью определяется величинами длины L и ширины В площади контакта. Шины, имеющие большее сечение профиля и больший диаметр, имеют и большую площадь контакта с грунтом. Исследования показали, что для достижения более высокой проходимости целесообразно увеличивать диаметр колеса, так как

Размер и конструкция колес в очень значительной степени определяют опорную проходимость. Опорной проходимостью автомобиля называют его способность двигаться по слабым деформируемым грунтам.

Чем больше размер колеса при данной вертикальной нагрузке, тем больше его площадь контакта с опорной поверхностью, а следовательно, меньше удельное давление на грунт.

Рассмотрим два колеса разных диаметров с шинами низкого давления (рис. 4). Величина внутреннего рабочего давления воздуха в них для твердых дорог при полной нагрузке назначается заводом-изготовителем, исходя из длительно допустимой величины деформации h шины в поперечном сечении, равной 10–12 % от высоты Н профиля. Площадь контакта шины с опорной поверхностью определяется величинами длины L и ширины В площади контакта.

Шины, имеющие большее сечение профиля и больший диаметр, имеют и большую площадь контакта с грунтом. Исследования показали, что для достижения более высокой проходимости целесообразно увеличивать диаметр колеса, так как при этом уменьшается общее сопротивление движению и благоприятно изменяются соотношения между длиной и шириной контакта. Такая форма колеса общепринята для колесных тракторов (рис. 5, а). Однако применение больших колес на автомобиле вызывает ряд затруднений: грузовую платформу приходится поднимать выше, при этом растет погрузочная высота и высота положения центра тяжести автомобиля. Для поворота больших управляемых колес необходимо много места. Поэтому конструкторы автомобилей охотнее идут на увеличение профиля шины при незначительном увеличении ее диаметра (рис. 5, б) или на увеличение ширины шины без увеличения ее диаметра. В последнем случае шина получается широкопрофильной (рис. 5, в). Применение вместо обычных дорожных спаренных шин с внутренним давлением 3–5 кгс/см2 односкатных увеличенного диаметра или профиля, а также широкопрофильных шин несколько улучшает проходимость автомобиля, но этого оказывается недостаточно. Внутреннее давление воздуха в таких шинах, соответствующее длительно допустимой деформации в 12 % от высоты профиля, составляет обычно около 2,0–3,5 кгс/см2. Удельное давление на грунт у таких шин ниже, чем у обычных, но оно все же велико, а деформация шин недостаточна для коренного улучшения процесса взаимодействия с грунтом и получения возможности движения по большей части слабых грунтов.

Отечественной шинной промышленностью созданы шины для автомобилей высокой проходимости, позволяющие работать на слабых грунтах не при 10–12 % деформации, а при деформации до 35 % от высоты профиля. Эти, так называемые, шины сверхнизкого давления на слабых грунтах работают при внутреннем давлении воздуха в них, равном 0,5 кгс/см2. От обычных шин они отличаются высокой эластичностью.

Эти шины отличаются малой толщиной боковин (рис. 6), что делает их эластичными и способными работать при больших деформациях. Конструкция протектора этих шин также отличается от обычной. У шин сверхнизкого давления грунтозацепы расчленены на отдельные элементы. Такая конструкция делает эластичной саму беговую дорожку шины. Повышенная мягкость шин обеспечивается повышенным содержанием в них каучука и меньшим числом слоев более прочного материала корда, что позволяет уменьшить толщину стенки.

Повышенная эластичность шины способствует улучшению взаимодействия колеса со слабыми грунтами и не вызывает больших перегревов при качении деформированной шины. Чтобы при понижении внутреннего давления шина не провернулась на ободе, ее борта зажимаются между ребордами разъемного диска и специальным распорным кольцом.

По мере снижения внутреннего давления в шинах площадь их контакта с грунтом увеличивается, а удельное давление снижается. Например, у автомобиля ЗИЛ-157 по замерам на твердом грунте среднее удельное давление составляет: при давлении в шинах рш = 3,5 кгс/см2 — 2,5, при рш = 1,5 кгс/см2 — 1,75, при рш = 0,5 кгс/см2 — 1,1 кгс/см2. Но по мере увеличения деформации шины возрастает сопротивление качению. У ЗИЛ-157 при буксировке его по твердой дороге сопротивление качению составляет: при рш = 3,5 кгс/см2 — 160, при рш = 1,5 кгс/см2 - 250 и при рш = 0,5 кгс/см2 — 550 кгс. Увеличение буксировочного сопротивления в этом случае связано с увеличением потерь на деформацию шин.

На мягком грунте величина деформации шин на соответствующих давлениях несколько меньше, чем на твердом, но доля потерь на деформацию шин в общем сопротивлении движению на низких давлениях воздуха значительна. Мощность, затрачиваемая на преодоление этих потерь, переходит в тепло, что приводит к повышенному нагреву шин. В связи с этим общая длительность движения с пониженным внутренним давлением в гарантийном пробеге шин и скорость движения ограничиваются специальными указаниями в инструкции по эксплуатации автомобиля.

Несмотря на то, что сопротивление качению деформированной шины выше, чем накаченной, общее уменьшение сопротивления движению по слабому грунту столь значительно, что в большинстве случаев дополнительные потери на деформацию шин полностью перекрываются уменьшением потерь на образование колеи (табл. 1). Как видно из табл. 1, потери на прокладывание колеи (потери в грунте) на луговине уменьшаются более чем в 4 раза (при давлении 0,5 кгс/см2), на сыром снегу (при давлении 1,5 кгс/см2) на 13–14 %, на песке (при давлении 0,5 кгс/см2) более чем в 3 раза.

Уменьшение сопротивления качению при пониженном давлении воздуха в шинах — это только часть эффекта, который получается при работе на слабых грунтах. Иногда этот эффект очень невелик. Например, на рыхлом сыпучем снегу. Однако, несмотря на это, проходимость автомобиля резко возрастает. Более важной частью эффекта при работе автомобиля на деформированных шинах является улучшение сцепных качеств шины и рост тяговой реакции грунта. При качении такой шины она как бы превращается в маленькую гусеницу с длиной опорной ветви, равной длине контакта деформированной шины с грунтом (рис. 7). При этом тяга автомобиля при понижении давления воздуха в шинах существенно увеличивается (табл. 2). Если сравнить величину уменьшения сопротивления движению и величину роста тяги на крюке в результате понижения давления воздуха в шинах (см. табл. 1 и 2), то видно, что тяга возрастает не на величину уменьшения сопротивления движению, а на существенно большую величину. Причем тяга возрастает даже в том случае, когда сопротивление движению на пониженном давлении воздуха в шинах не уменьшается, а возрастает (в нашем примере на сыром снегу).

Однако есть такое состояние снега, при котором его уплотнения под колесами практически не происходит. Это бывает при рыхлом сыпучем снеге и низких температурах воздуха. В этом случае снег практически не уплотняется и течет, как сахарный песок. Но и в этом случае при пониженном давлении в шинах, несмотря на то, что общее сопротивление движению возрастает (колея не уменьшается, а сила тяги, необходимая на качение деформированного колеса, больше, чем накаченного) имеет место улучшение сцепления колес со снегом. Величина тяги, развиваемая колесом, при этом определяется сопротивлением сдвигу в снежной «подушке», заключенной между шиной и грунтом.

Снежная «подушка», находящаяся под колесом и сжатая по вертикали, обладает определенным сопротивлением сдвигу. Величина этого сопротивления находится в тесной связи с величиной вертикального удельного давления. При этом уплотнения снега не происходит, а просто снег под колесом сжимается и испытывает упругую деформацию. В таком деформированном состоянии он способен воспринимать касательную тяговую нагрузку от колеса.

Эксперименты показывают, что наибольшее удельное сопротивление сдвигу поджатого снега соответствует вертикальному удельному давлению 0,5 кгс/см2. В табл. 5 приведены результаты испытаний по определению величины сопротивления сыпучего снега сдвигу при воздействии на него штампом, имитирующим площадку контакта колеса при различном вертикальном удельном давлении. Увеличение удельного давления свыше 0,5 кгс/см2 и уменьшение его приводит к уменьшению удельной силы сопротивления сдвигу и уменьшению тяговой реакции снега. При понижении давления воздуха в шинах до 0,5 кг/см2 удельное давление колес на снег приближается к этому оптимальному для сыпучего снега уровню.

Удельные давления на грунт, полученные при давлении воздуха 0,5 кгс/см2 и приведенные ранее, определены по отпечаткам шин на твердом грунте. На деформируемом грунте средняя величина удельных давлений фактически получается меньше, так как в этом случае нагрузку начинают воспринимать деформированные боковины шины, которые при снятии отпечатков шин на твердом грунте не касаются его и поэтому не учтены в площади отпечатка.

Следует иметь в виду, что в большинстве случаев давление воздуха в шинах, соответствующее наименьшему сопротивлению движения на слабых грунтах, не является тем давлением, которое следует использовать на бездорожье. Дело в том, что давление воздуха в шине, соответствующее наибольшему уровню тяги, как правило, несколько ниже давления, соответствующего наименьшему сопротивлению движения.

Так как в условиях бездорожья, помимо увеличенного сопротивления, связанного с образованием колеи, постоянно встречаются неровности дороги и другие препятствия для непрерывного движения, автомобиль должен обладать постоянным запасом сцепления колес (запасом тяги). Чем больше этот запас, т. е. чем большую тяговую реакцию грунт может оказывать при воздействии на него колес, тем увереннее движение и тем с большей скоростью можно двигаться. А большая скорость движения, в свою очередь, повышает проходимость автомобиля, так как отдельные короткие участки особо тяжелого бездорожья в этом случае преодолеваются с разгона с использованием кинетической энергии автомобиля.