Найти в Дзене

Эйнштейн написал в 1945 г. свое «Приложение», началось бурное развитие наблюдательной астрономии

Таким образом, проблема возраста Вселенной утратила остроту. Но космологи предпочитали, чтобы численное значение величины λ определялось исходя из наблюдений, а не по чьей- либо прихоти. Первое время из данных наблюдений вытекало, что значение отлично от нуля. Но к началу 70-х годов нашего века эти данные стали, скорее, свидетельствовать в пользу нулевого значения λ. Это означало в самом общем смысле слова, что следует отдать предпочтение именно тому простому осциллирующему типу вселенной, к которому склонялся Эйнштейн в 1931 г. Сейчас многие космологи следуют примеру Эйнштейна в отношении λ. Но есть и такие, которые смотрят на отказ от λ с презрительной насмешкой.

Был бы Эйнштейн жив, он бы взирал на все это спокойно и с удовольствием, непоколебимый в своем отрицании величины λ и уверенный в том, что придет еще его черед — когда-нибудь будет полностью реабилитировано его чувство красоты. Давайте же и мы наберемся терпения. 

Еще в 1916 г., до своей смелой космологической работы, Эйнштейн начал размышлять над гравитационными волнами. Не удивительно, что из общей теории относительности — теории поля — можно было вывести существование таких волн. Но по самой природе теории относительности эти волны должны были бы представлять собой величины самого космоса — слабые пульсации кривизны пространства, распространяющиеся со скоростью света. Или, пользуясь терминологией четырехмерного пространства, они должны были быть застывшими складками пространства — времени, приобретающими для нас характер движения в связи с нашим движением во времени. 

Каков бы ни был результат, стоит вспомнить Максвелла, чье предсказание о существовании электромагнитных волн было подтверждено лишь после его смерти. Волнам Максвелла суждено было сыграть совершенно непредвиденную роль в теории относительности. Ибо, хотя и с запозданием, они послужили толчком к появлению нового поколения наблюдателей неба — радиоастрономов, вооруженных не оптическими, а радиотелескопами. Именно в их наблюдениях стали активно проверяться положения общей теории относительности. 

Мы слишком отвлечемся от основной нити нашего повествования, если начнем говорить о квазарах, пульсарах и других открытиях, в изобилии рождающихся из наблюдений современных нам астрономов. Или если станем рассказывать о том, как экспериментаторы, совершенствуя методы измерения, вторгаются в область общей теории относительности и делают ее объектом все более сложных и тонких проверок, слишком многочисленных, чтобы упоминать о них. 

Остается лишь ожидать, что принесет нам будущее. Но уже открытие пульсаров подтвердило теоретическое предсказание о существовании полностью сгоревших звезд, взрывающихся в гравитационных коллапсах. Этот процесс ведет к образованию нейтронных звезд, обладающих такой же массой, как солнце, но достигающих в диаметре лишь около 10 километров. Пока еще не подтвердилось теоретическое предсказание о том, что бывают еще более катастрофические гравитационные коллапсы, ведущие к образованию «черных дыр», чья сила тяготения столь велика, что даже излучаемый ими свет не может вырваться вовне и остается в поле их тяготения. Существуют ли эти «черные дыры» или они лишь вытекающая из релятивистских уравнений фикция? Время покажет. Исследования продолжаются. 

По крайней мере можно сказать следующее: вплоть до начала 70-х годов нашего века, более чем через 50 лет после своего появления, общая теория относительности выдержала все экспериментальные проверки. Эта теория опередила свое время на десятки лет; среди возбуждения и сумятицы ведущихся в настоящее время космических исследований она занимает поистине достойное место.

12. ВСЕ ЛЮДИ СМЕРТНЫ

Еще раз нарушим строгий хронологический порядок повествования и возвратимся назад. С приездом в Принстон начался последний отрезок жизни Эйнштейна, и вскоре нам придется говорить об осени — том периоде жизни, когда яркие теплые краски бабьего лета сменяются мрачными тонами, олицетворяющими холодное дыхание зимы. 

Предоставим возможность выразить это настроение самому Эйнштейну. Истерзан войной 1918 года. Отклонение света еще не подтверждено. Всемирная слава еще не вторглась в его жизнь. Источник счастья Эйнштейна — его работа. Коллеги уже признают его великим ученым. И тем не менее в восторженности его высказываний присутствует оттенок грусти. Эйнштейн выступает на официальном праздновании по случаю 60-летнего юбилея Планка. Он говорит о Планке, однако в его словах звучит что-то, что можно отнести и к самому Эйнштейну: 

«Как и Шопенгауэр, я прежде всего думаю, что одно из наиболее сильных побуждений, ведущих к искусству и науке, — это желание уйти от будничной жизни с ее мучительной жестокостью и безутешной пустотой, уйти от уз вечно меняющихся собственных прихотей. Эта причина толкает людей с тонкими душевными струнами от личного бытия в мир объективного видения и понимания. Ее можно сравнить с тоской, неотвратимо влекущей горожанина из окружающих его шума и грязи к тихим высокогорным ландшафтам, где взгляд далеко проникает сквозь неподвижный чистый воздух, тешась спокойными очертаниями, которые кажутся предназначенными для вечности. 

Но к этой негативной причине добавляется позитивная. Человек стремится каким-то адекватным способом создать в себе простую и ясную картину мира; и не только для того, чтобы преодолеть мир, в котором он живет, но и для того, чтобы в известной мере попытаться заменить этот мир созданной им картиной. Этим занимаются художник, поэт, теоретизирующий философ и естествоиспытатель, каждый по-своему. На эту картину и ее оформление человек переносит центр тяжести своей духовной жизни, чтобы в ней обрести покой и уверенность, которые он не может найти в слишком тесном головокружительном круговороте жизни… 

Высшим долгом физиков является поиск тех общих элементарных законов, из которых путем чистой дедукции можно получить картину мира. К этим законам ведет не логический путь, а только основанная на проникновении в суть опыта интуиция… Горячее желание увидеть эту предустановленную гармонию является источником настойчивости и неистощимого терпения, с которыми… отдался Планк общим проблемам науки… Душевное состояние, способствующее такому труду, подобно чувству верующего или влюбленного: каждодневные усилия совершаются не по какой-то программе или не с какими-то определенными намерениями, а по велению сердца». 

В 1921 г. Эйнштейн писал своему другу: «Большие открытия — дело молодых… так что для меня это уже позади». И все же между 1917 г. и 1931 г. он не бездействовал. Нам уже известны и его роль в появлении квантовой механики, и бурная реакция на это со стороны физиков. Борьба за правильную интерпретацию квантовой механики привела к изоляции Эйнштейна в научном мире. В 1918 г. выдающийся немецкий математик Герман Вейль — в то время профессор Цюрихского политехникума — предложил столь естественное и остроумное дополнение общей теории относительности, что оно заслуживало лучшей судьбы, чем та, которая выпала на его долю. Кривизна пространства — времени в теории Эйнштейна и — как следствие этого — отсутствие прямых линий привели к тому, что странные вещи стали происходить с направлением движения. Для того чтобы оценить влияние кривизны на направление, давайте рассмотрим искривленную двумерную поверхность Земли. Представьте себе, что два корабля находятся на экваторе на большом расстоянии друг от друга и отправляются в плавание строго на север. Мы, безусловно, готовы были бы согласиться с тем, что оба корабля двигались параллельно, когда стартовали, и с тем, что в дальнейшем они двигались прямо вперед — ведь оба плыли на север, не меняя курс ни вправо, ни влево. И все же по мере движения кораблей в северном направлении вдоль меридианов они бы все больше и больше сближались. А поскольку это так, мы бы, безусловно, отказались от прежнего предположения, что движение кораблей остается параллельным. 

Вейля осенило, что в результате движения могут изменяться не только направления, но и размеры[42] кораблей — если оставаться в рамках нашего примера. Правда, к очертаниям кораблей это не относится. Вейль занялся разработкой вопроса: к чему приведет допущение такого рода изменений размеров? Оказалось, что в результате подобного допущения геометрическая структура пространства — времени должна претерпеть фундаментальные изменения. На первый взгляд может показаться, что 42 Это не имеет абсолютно ничего общего с сокращением Фитцджеральда — Лоренца.

если первоклассный математик проявляет желание поиграть такими идеями, то, что ж, он имеет на это полное право. Но планы Вейля шли дальше. Он показал, что, используя эту новую геометрическую структуру пространства — времени, удается естественным образом связать эйнштейновскую теорию гравитации с электродинамикой Максвелла. А это сразу возбуждает наш интерес. Ибо когда Эйнштейн интерпретировал гравитацию как кривизну, он не смог разработать столь же фундаментальную геометрическую интерпретацию для электромагнетизма. А Вейль, взяв за основу введенные им изменения длин, разработал геометрическое описание электромагнитных явлений. Электромагнетизм стал тем самым как бы геометрическим партнером гравитационной кривизны. Таким образом, Вейль создал то, что мы называем единой теорией поля. 

И с математической, и с эстетической точек зрения теория Вейля представляла собой значительное достижение. Но Эйнштейн всегда оставался прежде всего физиком и очень скоро пришел к выводу, что с этой теорией нельзя согласиться. 

В то время как другие восхищались творением Вейля, Эйнштейн указал на имеющийся в нем недостаток, а именно: в теории Вейля предполагалась зависимость длин предметов от их прошлого. В пространстве — времени термин «длина» может относиться как ко времени, так и к пространству. Атомы испускают свет, и их пульсация очень точно определяет длину временных отрезков. Этот факт доказан существованием совершенно четких спектральных линий. Если бы прошлое разных атомов сильно различалось, то они, согласно теории Вейля, отмечали бы несхожие промежутки времени, что привело бы en masse[43] не к спектральным линиям, а, скорее, к спектральным пятнам. Следовательно, нельзя обращаться с длинами так, как предложил Вейль. Таково было официальное возражение Эйнштейна против теории Вейля. В нем виден почерк великого физика, который интуитивно находит самую сердце- вину проблемы. Но в этом возражении не все раскрыто до конца. Вот отрывок из письма, написанного Эйнштейном Вейлю в 1918 г.; в нем звучит более серьезное возражение: 

«Можно ли, в самом деле, обвинять господа бога в непоследовательности за то, что он упустил найденную Вами возможность сделать физический мир гармоничным? Не думаю. Если бы он сотворил мир по-Вашему, [я] укоризненно сказал бы: „Милый бог, уж коль скоро в твоем решении не предусматривалось придать объективный смысл [тождественности размеров удаленных друг от друга твердых тел], почему же тогда ты не пренебрег [сохранением их форм]?“»

Вот где действительно виден почерк великого физика.