Она быстро принесла Бору известность среди ученых. И все же было в этой теории слабое место: в ней переплелись и классические, и квантовые представления. Сам автор прекрасно это осознавал. Многим физикам, даже достаточно авторитетным, все это показалось поначалу полнейшей бессмыслицей. В 1958 г. Бор, вспоминая это время, выразился весьма мягко: «3а пределами манчестерской группы [мои идеи] были восприняты с большим скептицизмом». Теория Бора и в самом деле вполне может быть преподнесена как явный вздор. Вдохновенный вздор. Чудо интуиции. Но пусть об этом скажет сам Эйнштейн. Осенью 1913 г. он назвал работу Бора «одним из величайших открытий» и с особым восхищением подчеркнул «грандиозное достижение» датского ученого, связавшего световое излучение с квантовыми переходами электронов, а не с их колебаниями, как это было принято считать с позиций максвелловской и даже квантовой теорий. В «Автобиографических набросках», написанных спустя тридцать лет, когда теория Бора уже давно уступила место новым идеям, Эйнштейн вспоминал об этих годах, предшествовавших первой мировой войне: «Все мои попытки… полностью провалились. Это было так, точно из- под ног ушла земля, и нигде не было видно твердой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьем — найти основные законы спектральных линий и электронных оболочек атомов, объясняя их значение для химии. Это кажется мне чудом и теперь. Это — наивысшая музыкальность в области мысли».
В 1900 г. при выводе своей формулы излучения абсолютно черного тела Планку не удалось избежать смешения квантовых и максвелловских идей, несмотря на существовавшие между ними противоречия. В 1916 г. Эйнштейн нашел новый способ (основанный на квантовых представлениях) обходиться, по существу, без понятий, определенных в максвелловской теории электромагнетизма. Успех теории Бора продемонстрировал, что по крайней мере в том, что касается внутренней энергии, атом можно сравнить с лестницей, т. е. с рядом ступеней или уровней. Существование этих энергетических уровней в атоме было фактически подтверждено прямым экспериментом, и Эйнштейну стало ясно, что в любом случае, какая бы судьба ни постигла теорию Бора со всей — увы — присущей ей мешаниной противоречивых представлений, идея о наличии энергетических уровней, безусловно, сохранит свое значение. Исходя из этого, он избрал эту идею в качестве прочного фундамента для своей дальнейшей работы. Использовав вероятностные соображения и далее обойдясь без предположения о существовании фотонов, он обнаружил, по его собственному выражению, «поразительно простой» вывод формулы Планка для излучения абсолютно черного тела. Ему удалось даже больше: вскрылась, например, прямая связь с основной формулой теории Бора. Эйнштейн с трудом скрывал восторг, увидев, как хорошо все подходит одно к другому. Отдавая свою работу для публикации, он написал: «Она прельщает своей простотой и универсальностью». Здесь не было преувеличения. Это было вполне в духе Эйнштейна. Он справедливо относил это исследование к своим лучшим работам. Оно оказало огромное влияние на Бора, а тем самым и на весь ход развития квантовой физики.
Основная идея несложна. Эйнштейн рассматривал газ, состоящий из одинаковых атомов. Для простоты представим себе, что эти атомы обладают всего двумя энергетическими уровнями, и будем с самого начала говорить о частицах света — фотонах, — хотя у Эйнштейна не было в этом нужды. Представим себе далее, что все фотоны обладают энергией, величина которой в точности соответствует разности этих уровней. Назовем атом, находящийся на нижнем уровне, «пустым», а атом на верхнем уровне — «заполненным». Таким образом, когда пустой атом поглощает фотон, он становится заполненным, а когда заполненный атом испускает фотон, он становится пустым.
А теперь вместе с Эйнштейном сформулируем три простых правила, вернее, сначала два, а через некоторое время третье. Все три правила представляют собой квантовые аналоги соответствующих процессов, описанных Максвеллом. Пустой атом останется пустым до тех пор, пока на его пути не встретится фотон. Заполненный атом рано или поздно самопроизвольно, без какого-либо возбуждения извне испустит фотон. Не имея адекватных данных о внутренних процессах в заполненном атоме, мы не можем прогнозировать, когда именно он испустит фотон. А потому мы допускаем, что при большом числе атомов и фотонов эмиссия квантов света происходит в случайные моменты, так что можно описать эту случайность вероятностной формулой. Статистическими формулами такого рода пользовались Резерфорд и другие ученые при исследовании радиоактивного распада атомных ядер.
Итак, пока что мы имеем два процесса. Во-первых, пустые атомы поглощают оказавшиеся в непосредственной близости фотоны. А, во-вторых, заполненные атомы самопроизвольно испускают в непредсказуемые моменты времени фотоны. (Этот процесс известен под названием спонтанная эмиссия.) Мы хотим, чтобы поглощение и эмиссия фотонов находились в равновесии. Но с помощью лишь двух вышеизложенных правил мы не придем к формуле Планка для излучения абсолютно черного тела. Эйнштейн понял, что для получения этой формулы нужен некий третий процесс. Представим себе, что заполненный атом сталкивается с фотоном. Он уже заполнен и не может поглотить еще один фотон. Тут мы, вероятно, сделали бы вполне закономерный вывод, что в этом случае ничего не произойдет. Однако Эйнштейн предположил, что заполненный атом попытается, так сказать, поглотить дополнительный фотон, а в результате ему не только не удастся это, но он еще и потеряет собственный фотон и превратится, таким образом, в пустой атом. Все это напоминает басню Эзопа с неизбежной моралью в конце, и тем не менее третий процесс имеет первостепенное научное значение. Он получил название индуцированной, или вынужденной, эмиссии. Здесь уместно отметить, что через три с половиной десятилетия индуцированная эмиссия стала находить практическое применение. Именно она лежит в основе действия лазера, который уже на сегодняшний день достаточно широко применяется в медицине и промышленности. Индуцированная эмиссия делает возможным и изобретение в военных целях смертоносного луча, способного уничтожить все, на что он будет направлен: людей, танки, самолеты и даже атомную бомбу. Нечто в этом роде вполне может стать оружием третьей мировой войны, если она разразится, и будет в таком случае создано на основе исследований в области квантов, проводя которые (в Берлине в годы первой мировой войны) Эйнштейн преследовал лишь чисто научные, эстетические цели.
Эта необычная история имеет еще много других скрытых сторон. Об одной из них нам хотелось бы коротко сказать. Вскоре была опубликована еще одна статья, в которой Эйнштейн продолжил исследования квантовых процессов в более широком масштабе. Он выдвинул неопровержимые доводы в пользу того, что кванты света следует рассматривать как частицы, обладающие энергией и импульсом, — что-то наподобие пуль. Доводы эти действительно были столь неотразимы, что он смело заявил в своей статье: «…излучения в форме… волн не существует». В самом деле, схожесть поведения квантов света с пулями была в 1923 г. эффектно подтверждена экспериментально. Но и свидетельства в пользу световых волн оставались убедительными, так что в 1922 г. и Бор (как раз в том году он получил Нобелевскую премию), и другие ученые все еще с большим недоверием относились к эйнштейновской идее о частицах света. В каком-то смысле Бор так никогда и не принял ее.
Первая встреча Эйнштейна с Бором произошла в 1920 г., когда Бор был приглашен в Берлин с лекциями о своей теории строения атома. Сразу же по приезде между ним и Эйнштейном завязалась оживленная дискуссия, доставившая обоим немало удовольствия и заполнившая каждую их свободную минуту от первого до последнего дня пребывания Бора в Берлине. Такой, собственно, и должна была быть эта первая встреча двух великих людей: оба относились друг к другу с величайшим уважением, оба были поглощены разрешением сложнейших, запутанных проблем, стоявших перед теоретической физикой. После отъезда Бора из Берлина Эйнштейн писал ему 2 мая 1920 г.: «Редко случалось мне в жизни встречать человека, одно присутствие которого приносило бы такую радость, какой была радость общения с Вами. Теперь я понимаю, отчего Вас так любит Эренфест». Бор отвечал: «Для меня встреча и беседы с Вами были одним из самых знаменательных событий в моей жизни. Вы не можете представить себе, каким великим стимулом было для меня знакомство с Вашей точкой зрения… Я никогда не забуду наши споры по дороге из Далема к Вашему дому…»
В 1922 г. Бор уже стал гордостью Дании, директором Института теоретической физики, который был учрежден в Копенгагене специально для него. Этот Институт стал всемирно признанным центром по развитию атомной теории. Из многих стран стекались в Копенгаген молодые и полные энтузиазма теоретики. Когда впоследствии многие из них в шутку говорили, что официальным языком в Институте был ломаный английский, то в этом, вероятно, была большая доля правды.
Что же касается Резерфорда, то он, как в свое время Максвелл, стал директором знаменитой Кавендишской лаборатории в Кембриджском университете. Теоретик Бор и экспериментатор Резерфорд поддерживали тесную связь, и под их вдохновенным руководством атомная физика шла вперед семимильными шагами.
Тем не менее не далее как в 1922 г. теория Бора столкнулась с серьезными трудностями. Все — и в первую очередь сам Бор — понимали, что эта теория была лишь продуктом переходного периода в развитии физики. Бор проявил большую изобретательность и расширил ее рамки, введя «принцип соответствия» (запомним этот термин). Это придало ей новую поддержку со стороны неквантовой, классической физики. Однако принцип соответствия имел все признаки временной меры. Становилось ясно, что теория Бора почти исчерпала свои ресурсы, и, поскольку не было, казалось, даже намека на другую теорию, способную занять ее место, теоретики атомной физики пребывали в состоянии глубокой безысходности.
Но вскоре словно внезапный взрыв смел все препятствия к дальнейшему прогрессу. Как выяснилось, необходимые намеки имелись-таки в достаточном количестве, и всего за несколько лет напряженных и беспорядочных поисков вся картина преобразилась. Не пытайтесь во что бы то ни стало разобраться в том, что последовало далее. В общих чертах это рассказ о нагромождении событий и самых невероятных интерпретаций, которые способны были поставить в тупик даже величайшие умы. И если это и впрямь покажется лишенным всякой упорядоченности, то по крайней мере поможет создать какое-то впечатление о тех судорожных усилиях, которые предпринимали ученые, пытаясь найти выход из создавшегося положения.
Когда французский физик Морис де Бройль вернулся со знаменитого Сольвеевского конгресса 1911 г., его рассказы о возникших на этом конгрессе дискуссиях взволновали его младшего брата, Луи де Бройля, пожалуй, еще сильнее, чем рассказ Резерфорда об этом конгрессе — молодого Бора. И загадка квантов, и противоречивые факты, подтверждающие, с одной стороны, корпускулярное, а с другой — волновое строение света, не давали покоя Луи де Бройлю, и он между 1922 и 1924 гг. разработал фантастическую на первый взгляд теорию. Свет, считал де Бройль, состоит из частиц, сопровождаемых и направляемых волнами. И — что еще важнее, — по его мысли, точно так же сопровождаются волнами электроны, причем эти волны распространяются со скоростью, превышающей скорость света. Это вполне может показаться неправдоподобным. Да и в самом деле, предложенная де Бройлем интерпретация разработанного им математического аппарата не выдержала проверки, зато ему удалось наглядно объяснить с помощью волн разрешенные электронные орбиты Бора.