Содержание
Введение
1. Технологии. Способы описания (производственное множество, изокванты и множество необходимых ресурсов, производственная функция)
2. Примеры технологий, свойства технологий: свободное распоряжение ресурсами, выпуклость, отдача на фактор и отдача от масштаба, предельная норма технического замещения
3. Связь между свойствами производственного множества и представляющей его производственной функции
Заключение
Введение
В условиях современного общества ни один человек не может потреблять только то, что он сам производит. Для наиболее полного удовлетворения своих потребностей люди вынуждены обмениваться тем, что они производят. Без постоянного производства благ не было бы потребления. Поэтому большой интерес представляет анализ закономерностей, действующих в процессе производства благ, которые формируют в дальнейшем их предложение на рынке. Производственный процесс - это основное и первоначальное понятие экономики.
Актуальность настоящей работы обусловлена, с одной стороны, большим интересом к теме реферата в современной науке, с другой стороны, ее недостаточной разработанностью.
Рассмотрению обозначенного вопроса посвящено множество работ. В основном материал, изложенный в учебной литературе, носит общий характер, а многочисленные монографии данную тематику рассматривают более узко.
Целью исследования является изучение темы реферата.
В рамках достижения цели поставлены следующие задачи:
1. Рассмотреть понятие «производственная функция».
2. Проанализировать, что представляет собой изокванта, как количественное выражение производственной функции и предельная норма технологического замещения одного фактора производства другим.
1. Технологии. Способы описания (производственное множество, изокванты и множество необходимых ресурсов, производственная функция)
Общий результат трудовой деятельности – объем созданной продукции – является зависимым от действия основных факторов производства, их количественного и качественного уровня. Эта связь выражается математической формулой, получившей название производственная функция. Она была разработана в 1890 году английским математиком А. Берри, помогавшим А. Маршаллу при подготовке математического приложения к работе «Принципы экономической науки». В ней показывается количественная зависимость объема выпуска продукции от трех факторов – капитала (средств производства), труда и технического прогресса. Если рассматриваемую функцию выразить в показателях среднегодовых темпов прироста факторов, то она примет следующий вид:
Y= αK + βL + r,
где Y, K, L соответственно темп прироста капитала, продукции и рабочей силы, r – комплексный показатель роста совокупной экономической эффективности всех факторов. α и β – коэффициенты эластичности объема производства соответственно по капиталу и по труду (или коэффициенты, характеризующие прирост объема выпуска продукции, приходящейся на 1 % прироста соответствующего фактора). Производственная функция имеет постоянную эластичность замещения производственных факторов, равную единице. Это означает, что, скажем увеличение численности рабочих (соответственно рост фонда заработной платы) равноценно увеличению основного капитала, т.е. вызовет точно такое же повышение выпуска продукции.
В соответствии с различием между технологической и экономической эффективностью выбор оптимального производственного процесса часто описывается как инженерно-техническое решение, за которым следует экономическое решение. Инженер или технический эксперт отбирает технологические процессы, характеризующиеся минимальными потребностями в ресурсах, отбрасывая все те, которые являются технологически неэффективными. Затем наступает очередь бизнесмена принимать экономическое решение, т.е. выбрать технически эффективный процесс, характеризующийся наименьшими издержками, и, следовательно, являющийся экономически эффективным.
Производственная функция учитывает, что факторы могут использоваться в различных пропорциях, а значит, продукция может выпускаться разными способами. Например, вино можно произвести трудоемким способом, топча виноград ногами или капиталоемким, с применением машин. Производственная функция показывает, что является технологически осуществимым при условии, что фирма работает эффективно, т.е. использует каждое сочетание производственных факторов наилучшим образом. Поскольку производственная функция описывает максимально возможный объем выпуска для заданного набора факторов при технологически эффективном способе производства, ресурсы, снижающие выпуск продукции, не будут использоваться никогда. Предположение о том, что производство всегда технологически эффективно, не всегда справедливо, но есть основания ожидать, что стремящиеся к максимальной прибыли фирмы не будут расходовать ресурсы впустую.
Существует удобный способ изображения производственных взаимосвязей для случая двух факторов производства, известный как изокванта. Изокванта — это множество всех возможных комбинаций факторов 1 и 2, которые как раз достаточны для производства данного объема выпуска.
Изокванты подобны кривым безразличия. Как мы видели ранее, кривая безразличия изображает различные потребительские наборы, как раз достаточные для обеспечения определенного уровня полезности. Однако между кривыми безразличия и изоквантами имеется одно существенное различие. Изокванты обозначаются не уровнями полезности, а объемами выпуска, которые могут быть произведены с помощью соответствующих комбинаций факторов. Поэтому обозначение изоквант задано технологией и не имеет той произвольной природы, которая присуща обозначению полезности.
2. Примеры технологий, свойства технологий: свободное распоряжение ресурсами, выпуклость, отдача на фактор и отдача от масштаба, предельная норма технического замещения
Постоянные пропорции. Предположим, что наше производство — рытье ям и что яму можно вырыть единственным способом — используя одного человека и одну лопату. Ни дополнительные лопаты, ни дополнительные люди ничего не стоят. Таким образом, общее число ям, которое может быть вырыто, будет определяться минимумом имеющегося у вас числа людей и лопат. Мы записываем соответствующую производственную функцию в виде f(x1, x2) = min {x1, x2}. Изокванты имеют вид, представленный на рис.17.2. Обратите внимание на то, что эти изокванты выглядят точно так же, как кривые безразличия для случая совершенных комплементов в теории поведения потребителей.
Совершенные субституты. Предположим теперь, что мы производим домашние задания и факторами производства являются красные и синие карандаши. Количество произведенных домашних заданий зависит только от общего числа карандашей, поэтому мы записываем производственную функцию как f(x1, x2) = x1 + x2. Соответствующие изокванты, как показано на рис.17.3, выглядят в точности так же, как кривые безразличия для случая совершенных субститутов в теории поведения потребителей.
Производственная функция Кобба—Дугласа. Если производственная функция имеет вид f(x1, x2) = A, то мы говорим, что это производственная функция Кобба—Дугласа. Она имеет в точности такой же вид, как и изученная нами ранее функция, описывающая предпочтения Кобба—Дугласа. Для функции полезности численное значение роли не играло, поэтому мы считали A = 1 и обычно выбирали a + b = 1. Однако численное значение производственной функции существенно важно, поэтому теперь следует допустить принятие этими параметрами произвольных значений. Параметр A измеряет, грубо говоря, масштаб производства: объем выпуска, который мы получили бы, если бы использовали по одной единице каждого фактора производства. Параметры a и b показывают, как реагирует объем выпуска на изменения количеств применяемых факторов производства. Значение этих параметров мы исследуем более детально далее. В некоторых примерах для того чтобы упростить расчеты, будем выбирать A = 1.
Изокванты Кобба—Дугласа имеют ту же самую симпатичную стандартную форму, что и кривые безразличия Кобба—Дугласа; как и в случае функций полезности, производственная функция Кобба—Дугласа — это, пожалуй, простейший пример стандартных изоквант.
Как и в случае с потребителями, принято считать, что технологии присущи определенные свойства. Во-первых, мы будем, как правило, предполагать, что технологии монотонны: увеличение применяемого количества хотя бы одного фактора производства должно давать возможность произвести по меньшей мере столько же выпуска, сколько производилось первоначально. Иногда данное свойство называют свойством бесплатного распоряжения: если у фирмы имеется возможность бесплатно распоряжаться любыми применяемыми факторами производствами, то располагать дополнительным количеством факторов ей не повредит.
Во-вторых, мы часто будем исходить из предпосылки о выпуклости технологии. Это означает, что если у вас имеется два способа произвести y единиц выпуска (x1, x2) и (z1, z2), то с помощью средневзвешенной комбинации этих способов можно произвести по меньшей мере y единиц выпуска.
Один из доводов в пользу выпуклости технологий сводится к следующему. Предположим, что имеется некоторый способ произвести одну единицу выпуска, используя a1 единиц фактора 1 и a2 единиц фактора 2, и другой способ произвести одну единицу выпуска, используя b1 единиц фактора 1 и b2 единиц фактора 2. Мы называем эти два способа производства выпуска технологиями производства. Предположим далее, что вы можете задать произвольный масштаб выпуска, так что (100a1, 100a2) и (100b1, 100b2) произведут 100 единиц выпуска. Однако теперь обратите внимание на то, что , имея 25a1 + 75b1 единиц фактора 1 и 25a2 + 75b2 единиц фактора 2, вы по-прежнему можете производить 100 единиц выпуска: достаточно произвести 25 единиц выпуска, применяя технологию "a" и 75 единиц выпуска, применяя технологию "b".
Выбирая степень использования каждой из двух технологий, вы можете произвести данный объем выпуска целым рядом различных способов. В частности, любая комбинация факторов вдоль линии, соединяющей (a1, a2) и (b1, b2), будет практически осуществимым способом производства y единиц выпуска.
При такого рода технологии, когда можно легко увеличивать и уменьшать масштаб производства и когда отдельные производственные процессы не взаимодействуют друг с другом, предположение о выпуклости изоквант является вполне естественным.
3. Связь между свойствами производственного множества и представляющей его производственной функции
Производственное множество отражает широту возможностей производителя: чем оно больше, тем шире его возможности. Производственное множество должно удовлетворять следующим условиям:
1. оно замкнуто – это означает, что если вектор Т затрат-выпуска сколь угодно точно приближается векторами из τ, то и Т принадлежит τ (если все точки вектора Т лежат в τ, то ТÎτ см. рис. 2.1 точки С и В);
2. в τÇ(-τ) = {0}, т. е. если TÎτ, T ≠ 0, то -ТÏτ – нельзя поменять местами затраты и выпуск, т. е. производство – необратимый процесс (множество – τ находится в четвертом квадранте, где у < 0, х > 0);
3. множество выпукло, это предположение ведет к уменьшению отдачи от перерабатываемых ресурсов с ростом объемов производства (к увеличению норм расхода затрат на готовую продукцию). êy/x ê убывает при х ® -¥. В частности, предположение о выпуклости ведет к уменьшению производительности труда с ростом объема производства.
Часто выпуклости просто бывает недостаточно, и тогда требуют строгой выпуклости производственного множества (или некоторой его части).
С понятием производственной функции тесно связано понятие множества производственных возможностей, которое определяется как множество всех возможных сочетаний затрат трудовых, материальных ресурсов и выпусков продукции [x, y] О G(a), где G(a) - некоторое множество G в пространстве ресурсов и продуктов, зависящее от вектора - параметра a, удовлетворяющего соотношению 0≤a≤0,1. Множество производственных возможностей в случае n=1 задается соотношением: 0≤y≤xa, a < 1.
Рассмотрим некоторые наиболее общие свойства производственных функций, имеющих форму, то есть, функций выпуска, допускающих замещение одного ресурса другим.
Вектор параметров a будем опускать, считая, что параметры уже определены и их влияние нас не интересует. Рассмотрим случай m=1, т.е. выпуск 1 вида продукции.
Тогда производственная функция имеет вид:
y=F(x)
Обычно относительно производственной функции делают предположение о непрерывном изменении переменных x и достаточно плавном изменении выпуска при изменении затрат ресурсов.
В математической форме эти предположения имеют следующий вид:
F(x)О Cn[x≥0]
то есть функция определена и непрерывна при всех неотрицательных значениях x и является нужное число раз дифференцируемой.
Заключение
Производственная функция является основным инструментом анализа производства. Производственные функции позволяют количественно проанализировать важнейшие экономические зависимости в сфере производства. Они дают возможность оценить среднюю и предельную эффективность различных ресурсов производства, эластичность выпуска по различным ресурсам, предельные нормы замещения ресурсов, эффект от масштаба производства и многое другое.
Линия на графике, показывающая разные сочетания производственных ресурсов и данный объем выпуска, называется изоквантой. Эти сочетания ресурсов (технологии) являются наиболее эффективными, т.к. любая точка на изокванте соответствует минимальным объемам ресурсов, необходимых для получения заданного объема готовой продукции. Изокванта обычно выпукла к началу координат вследствие предполагающейся взаимозаменяемости ресурсов. Когда ресурсы являются взаимодополняемыми, изокванта имеет L-образную форму. Когда ресурсы представляют собой совершенные субституты, она принимает форму прямой линии. Совокупность изоквант, отражающая максимально достижимый выпуск продукции при любом заданном наборе факторов производства называется картой изоквант. Предельная норма технологического замещения одного фактора производства другим – величина, на которую может быть сокращен один фактор за счет использования одной дополнительной единицы другого фактора при постоянном объеме выпуска продукции. В данной работе тема «Производственная функция. Изокванта, предельная норма технологического замещения одного фактора производства другим» раскрыта лишь частично, что открывает широкие возможности для более детального дальнейшего изучения ее в рамках другой работы.