Найти в Дзене
Аня-Лиза Брысенковы

Структура и масштабы Вселенной.

Наша Вселенная необъятна, она поражает своими размерами и заставляет восхищаться своими масштабами. А что мы знаем о мироздании, каков космос? Вселенная – это трудно постижимый человеческим разумом безграничный мир, который кажется нереальным и нематериальным. На самом деле нас окружает материя, безграничная в пространстве и во времени, способная принимать различные формы. Чтобы попытаться понять истинные масштабы космического пространства, как устроена Вселенная, строение мироздания и процессы эволюции, нам потребуется переступить порог собственного мироощущения, взглянуть на окружающий нас мир под другим ракурсом, изнутри. Строение и структура Вселенной. С образования водородного газа начинается звездная эра эволюции Вселенной. Водород под действием гравитации скапливается в огромные скопления, сгустки. Масса и плотность таких скоплений колоссальны, в сотни тысяч раз превышают массу самой сформировавшейся галактики. Неравномерное распределение водорода, наблюдавшее
Оглавление

Наша Вселенная необъятна, она поражает своими размерами и заставляет восхищаться своими масштабами. А что мы знаем о мироздании, каков космос? Вселенная – это трудно постижимый человеческим разумом безграничный мир, который кажется нереальным и нематериальным. На самом деле нас окружает материя, безграничная в пространстве и во времени, способная принимать различные формы. Чтобы попытаться понять истинные масштабы космического пространства, как устроена Вселенная, строение мироздания и процессы эволюции, нам потребуется переступить порог собственного мироощущения, взглянуть на окружающий нас мир под другим ракурсом, изнутри.

Человек-молекула мироздания.
Человек-молекула мироздания.

Строение и структура Вселенной.

С образования водородного газа начинается звездная эра эволюции Вселенной. Водород под действием гравитации скапливается в огромные скопления, сгустки. Масса и плотность таких скоплений колоссальны, в сотни тысяч раз превышают массу самой сформировавшейся галактики. Неравномерное распределение водорода, наблюдавшееся на начальной стадии формирования мироздания, объясняет различия в размерах образовавшихся галактик. Там, где должно было существовать максимальное скопление водородного газа, образовались мегагалактики. Где концентрация водорода была незначительной, появились галактики меньших размеров, подобные нашему звездному дому – Млечному Пути.

Структура.
Структура.

С точки зрения научных обоснований и современной модели Вселенной, сначала формировались галактики в результате действия гравитационных сил. Происходило превращение материи в колоссальный вселенский водоворот. Центростремительные процессы обеспечили последующую фрагментацию газовых облаков в скопления, которые стали местом рождения первых звезд. Протогалактики с быстрым периодом вращения превратились со временем в спиральные галактики. Там, где вращение было медленным, и в основном наблюдался процесс сжатия вещества, образовались неправильные галактик, чаще эллиптические. На этом фоне во Вселенной происходили более грандиозные процессы – формирование сверхскоплений галактик, которые тесно соприкасаются своими краями друг с другом.

-3

С этого момента стало ясно, что Вселенная представляет собой огромную карту, где континентами являются скопления галактик, а странами – мегагалактики и галактики, образовавшиеся миллиарды лет назад. Каждое из образований состоит из скопления звезд, туманностей, скоплений межзвездного газа и пыли. Однако все это население составляет лишь 1% от общего объема вселенских образований. Основную массу и объем галактик занимает темная материя, природу которой выяснить не представляется возможным.

Наблюдение-основа астрономии.

Огромные пространственно-временные масштабы изучаемых объектов и явлений определяют отличительные особенности астрономии.

Сведения о том, что происходит за пределами Земли в космическом пространстве, учёные получают главным образом на основе приходящего от этих объектов света и других видов излучения. Наблюдения — основной источник информации в астрономии. Эта первая особенность астрономии отличает её от других естественных наук (например, физики или химии), где значительную роль играют опыты и эксперименты, планируемые в лабораториях. Возможности проведения экспериментов за пределами Земли появились лишь благодаря космонавтике. Но и в этих случаях речь идёт о проведении исследований небольшого масштаба, таких, например, как изучение химического состава лунных или марсианских пород. Трудно представить себе эксперименты над планетой в целом, звездой или галактикой.

-4

Вторая особенность объясняется значительной продолжительностью целого ряда изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать многие из происходящих явлений невозможно. Когда явления происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звёзд. Основные сведения об эволюции звёзд получены именно таким способом. Более подробно об этом будет рассказано далее.

Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью сразу указать, какое из них находится ближе, а какое дальше от нас. На первый взгляд, все наблюдаемые светила кажутся нам одинаково далёкими.

Люди в древности считали, что все звёзды располагаются на небесной сфере, которая вращается вокруг Земли как единое целое. Уже более 2000 лет тому назад астрономы стали применять способы, которые позволяли указать расположение любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам. Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что реально этой сферы не существует.

-5

Основным прибором, который используется в астрономии для наблюдения небесных тел, приёма и анализа приходящего от них излучения, является телескоп. Слово это происходит от двух греческих слов: tele — далеко и skopéо — смотрю.

Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооружённому глазу. Чем более слабые объекты даёт возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.

Телескоп, придуманный Галилеем.
Телескоп, придуманный Галилеем.

Количество света, собираемого объективом, возрастает пропорционально его площади (квадрату диаметра) (рис. 1.4). Диаметр зрачка человеческого глаза даже в полной темноте не превышает 8 мм. Объектив телескопа может превышать по диаметру зрачок глаза в десятки и сотни раз. С помощью телескопов и современных приёмников излучения возможно обнаружить звёзды и другие объекты, которые в 100 млн раз слабее объектов, видимых невооружённым глазом.

Итак, мы поняли, астрономия-очень обширная наука. Чтобы изучить, как можно больше, ученым нужны помощники. К счастью, цивилизация не стоит на месте и появляются великолепные, многофункциональные и современные телескопы.

Самый современный и большой телескоп в мире. (Евразия)
Самый современный и большой телескоп в мире. (Евразия)