Найти в Дзене
Карина Кокомбаева

Структура и масштабы Вселенной. Наблюдение - основа астрономии.

Вселенная – весь существующий материальный мир, бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Структура (от лат. structura – строение, расположение, порядок) – совокупность устойчивых связей объекта, обеспечивающих сохранение его основных свойств при различных внешних и внутренних изменениях. Масштаб – отношение двух линейных размеров.Отношение натуральной величины объекта к величине его изображения. Мегамир (от греч. μέγας – большой) – структурная область Вселенной, объекты которой характеризуются огромными масштабами, измеряемыми десятками – миллиардами световых лет (звезды, черные дыры, звездные скопления, галактики, скопления галактик). Макромир (от греч. μάκρος – большой) – структурная область Вселенной, объекты которой соизмеримы с масштабами жизни на Земле (доступны человеку для наблюдения с помощью органов чувств). Микромир (от греч. μικρός – малый) – структурная область Вселенной, объекты которой имеют размеры порядка 10-8 м и мень

Вселенная – весь существующий материальный мир, бесконечно разнообразный по формам, которые принимает материя в процессе своего развития.

Структура (от лат. structura – строение, расположение, порядок) – совокупность устойчивых связей объекта, обеспечивающих сохранение его основных свойств при различных внешних и внутренних изменениях.

Масштаб – отношение двух линейных размеров.Отношение натуральной величины объекта к величине его изображения.

  • Под Вселенной понимается всё многообразие окружающего материального мира. Во Вселенной можно выделить структурные области, объекты которой различаются масштабами и закономерностями своего существования: мегамир, макромир, микромир, наномир.

Мегамир (от греч. μέγας – большой) – структурная область Вселенной, объекты которой характеризуются огромными масштабами, измеряемыми десятками – миллиардами световых лет (звезды, черные дыры, звездные скопления, галактики, скопления галактик).

Макромир (от греч. μάκρος – большой) – структурная область Вселенной, объекты которой соизмеримы с масштабами жизни на Земле (доступны человеку для наблюдения с помощью органов чувств).

Микромир (от греч. μικρός – малый) – структурная область Вселенной, объекты которой имеют размеры порядка 10-8 м и меньше (молекулы, атомы, ядра атомов, элементарные частицы).

Наномир (от греч. μικρός – карлик) – пограничная область микромира, особые структуры которого характеризуются размерами объектов порядка 1 – 100 нм (1 нм = 10-9 м), что соответствует размерам молекул и атомов.

Световой год – расстояние, которое свет проходит за 1 год (9,46∙1012 км).

Астрономическая единица (а.е.) – расстояние, равное среднему расстоянию Земли от Солнца (149,6 млн. км).

  • Возраст вселенной примерно 13,7 млрд лет, после примерно 1 млрд. лет после большого взрыва произошла реионизация и начался процесс образования галактик. Возраст солнечной системы около 5 млрд. лет. , а возраст Земли около 4,5 млрд.лет.
Космическая шкала времени и эволюции Вселенной, в соответствии с которой можно объяснить появление космических объектов.
Космическая шкала времени и эволюции Вселенной, в соответствии с которой можно объяснить появление космических объектов.
  • С образования водородного газа начинается звездная эра эволюции Вселенной. Водород под действием гравитации скапливается в огромные скопления, сгустки. Масса и плотность таких скоплений колоссальны, в сотни тысяч раз превышают массу самой сформировавшейся галактики. Неравномерное распределение водорода, наблюдавшееся на начальной стадии формирования мироздания, объясняет различия в размерах образовавшихся галактик. Там, где должно было существовать максимальное скопление водородного газа, образовались мегагалактики. Где концентрация водорода была незначительной, появились галактики меньших размеров, подобные нашему звездному дому – Млечному Пути.
Версия, в соответствии с которой Вселенная представляет собой точку начала-конца, вокруг которой вращаются галактики на разных этапах развития.
Версия, в соответствии с которой Вселенная представляет собой точку начала-конца, вокруг которой вращаются галактики на разных этапах развития.
  • Астрономические наблюдения это целенаправленная и активная регистрация информации о процессах и явлениях, происходящих во Вселенной.
Основа астрономии.
Основа астрономии.

ОСОБЕННОСТИ АСТРОНОМИИ:

  1. Первая особенность астрономии отличает её от других естественных наук (например, физики или химии), где значительную роль играют опыты и эксперименты, планируемые в лабораториях. Возможности проведения экспериментов за пределами Земли появились лишь благодаря космонавтике. Но и в этих случаях речь идёт о проведении исследований небольшого масштаба, таких, например, как изучение химического состава лунных или марсианских пород. Трудно представить себе эксперименты над планетой в целом, звездой или галактикой.
  2. Вторая особенность объясняется значительной продолжительностью целого ряда изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать многие из происходящих явлений невозможно. Когда явления происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звёзд. Основные сведения об эволюции звёзд получены именно таким способом. Более подробно об этом будет рассказано далее.
  3. Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью сразу указать, какое из них находится ближе, а какое дальше от нас. На первый взгляд, все наблюдаемые светила кажутся нам одинаково далёкими.
  • Люди в древности считали, что все звёзды располагаются на небесной сфере, которая вращается вокруг Земли как единое целое. Уже более 2000 лет тому назад астрономы стали применять способы, которые позволяли указать расположение любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам. Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что реально этой сферы не существует.
  • Построим небесную сферу и проведём из её центра луч по направлению к звезде A (рис. 1.1). Там, где этот луч пересечёт поверхность сферы, поместим точку A1, изображающую эту звезду. Звезда B будет изображаться точкой B1. Повторив подобную операцию для всех наблюдаемых звёзд, мы получим на поверхности сферы изображение звёздного неба — звёздный глобус. Ясно, что если наблюдатель находится в центре этой воображаемой сферы, то для него направления на сами звёзды и на их изображения на сфере будут совпадать. Расстояния между звёздами на небесной сфере можно выражать только в угловой мере. Эти угловые расстояния измеряются величиной центрального угла между лучами, направленными на одну и другую звезду, или соответствующей им дуги на поверхности сферы.
Рис. 1.1. Небесная сфера.
Рис. 1.1. Небесная сфера.
Рис. 1.2. Оценка угловых расстояний на небе.
Рис. 1.2. Оценка угловых расстояний на небе.
  • Для приближённой оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звёздами ковша Большой Медведицы (α и β) составляет около 5° (рис. 1.2), а от α Большой Медведицы до α Малой Медведицы (Полярной звезды) — в 5 раз больше — примерно 25°. Простейшие глазомерные оценки угловых расстояний можно провести также помощью пальцев вытянутой руки.

Только два светила — Солнце и Луну — мы видим как диски. Угловые диаметры этих дисков почти одинаковы — около 30ʹ или 0,5°. Угловые размеры планет и звёзд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооружённого глаза объект не выглядит точкой в том случае, если его угловые размеры превышают 2—3ʹ. Это означает, в частности, что наш глаз различает каждую светящуюся точку (звезду) отдельно от другой звезды в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз.

Чтобы отыскать на небе светило, надо указать, в какой стороне горизонта и как высоко над ним оно находится. С этой целью используется система горизонтальных координат — азимут и высота. Для наблюдателя, находящегося в любой точке Земли, нетрудно определить вертикальное и горизонтальное направления. Первое из них определяется с помощью отвеса и изображается на чертеже (рис. 1.3) отвесной линией ZZ ʹ, проходящей через центр сферы (точку O). Точка Z, расположенная прямо над головой наблюдателя, называется зенитом. Плоскость, которая проходит через центр сферы перпендикулярно отвесной линии, образует при пересечении со сферой окружность — истинный или математический горизонт. Высота светила отсчитывается по окружности, проходящей через зенит и светило M, и выражается длиной дуги этой окружности от горизонта до светила. Эту дугу и соответствующий ей угол принято обозначать буквой h. Высота светила, которое находится в зените, равна 90°, на горизонте — 0°. Положение светила относительно сторон горизонта указывает его вторая координата — азимут, обозначаемый буквой A. Азимут отсчитывается от точки юга в направлении движения часовой стрелки, так что азимут точки юга равен 0°, точки запада — 90° и т. д. Обратите внимание, что определение астрономического азимута отличается от географического азимута, который традиционно отсчитывается от точки севера.

Рис. 1.3. Система горизонтальных координат.
Рис. 1.3. Система горизонтальных координат.
  • Горизонтальные координаты указывают положение светила на небе в данный момент и вследствие вращения Земли непрерывно меняются. На практике, например в геодезии, высоту и азимут измеряют специальными угломерными оптическими приборами — теодолитами.
  • Основным прибором, который используется в астрономии для наблюдения небесных тел, приёма и анализа приходящего от них излучения, является телескоп. Слово это происходит от двух греческих слов: tele — далеко и skopéо — смотрю.

Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооружённому глазу. Чем более слабые объекты даёт возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.

Количество света, собираемого объективом, возрастает пропорционально его площади (квадрату диаметра) (рис. 1.4). Диаметр зрачка человеческого глаза даже в полной темноте не превышает 8 мм. Объектив телескопа может превышать по диаметру зрачок глаза в десятки и сотни раз. С помощью телескопов и современных приёмников излучения возможно обнаружить звёзды и другие объекты, которые в 100 млн раз слабее объектов, видимых невооружённым глазом.

Рис. 1.4. Собирание света объективом телескопа.
Рис. 1.4. Собирание света объективом телескопа.
  • Чем меньше размер изображения светящейся точки (звезды), которое даёт объектив телескопа, тем лучше его разрешающая способность. Если расстояние между изображениями двух звёзд меньше размера самого изображения, то они сливаются в одно. Вследствие дифракции изображение звезды будет не точкой, а ярким пятном.

Если в качестве объектива телескопа используется линза, то такой телескоп называется рефрактором (от лат. refracto — преломляю), а если вогнутое зеркало, — то рефлектор (reflecto — отражаю).

Помимо рефракторов и рефлекторов в настоящее время используются различные типы зеркально-линзовых телескопов, один из которых — менисковый — представлен на рисунке 1.5.

Рис. 1.5. Менисковый телескоп.
Рис. 1.5. Менисковый телескоп.
 Рис. 1.6. Построение изображения в телескопе.
Рис. 1.6. Построение изображения в телескопе.
  • У небольших телескопов объективом, как правило, служит двояковыпуклая собирающая линза. Как известно, если предмет находится дальше двойного фокусного расстояния, она даёт его уменьшенное, перевёрнутое и действительное изображение. Это изображение располагается между точками фокуса и двойного фокуса линзы. Расстояния до Луны, планет, а тем более звёзд так велики, что лучи, приходящие от них, можно считать параллельными. Следовательно, изображение объекта будет располагаться в фокальной плоскости.

Построим изображение Луны, которое даёт объектив 1 с фокусным расстоянием F (рис. 1.6). Объектив строит изображение объекта, линейные размеры которого определяются фокусным расстоянием F и угловыми размерами α объекта на небе. Воспользуемся теперь ещё одной линзой — окуляром 2, поместив её от изображения Луны (точка F1) на расстоянии, равном фокусному расстоянию этой линзы — f. Фокусное расстояние окуляра должно быть меньше, чем фокусное расстояние объектива. Построив изображение, которое даёт окуляр, мы убедимся, что он увеличивает угловые размеры Луны: угол β заметно больше угла α.

  • Современный телескоп представляет собой сложное устройство, которое имеет предельно точную оптику малых и больших размеров, наилучшие из существующих приёмники излучения и обширный комплекс научной и обслуживающей аппаратуры. Все наиболее крупные современные телескопы — это телескопы-рефлекторы.

Крупнейший в России телескоп-рефлектор (рис. 1.7) имеет зеркало диаметром 6 м, отшлифованное с точностью до долей микрометра. Фокусное расстояние зеркала 24 м. Его масса около 40 т. Масса всей установки телескопа более 850 т, а высота 42 м. Управление телескопом осуществляется с помощью компьютера, который позволяет точно навести телескоп на изучаемый объект и длительное время удерживать его в поле зрения, плавно поворачивая телескоп вслед за вращением Земли. Телескоп входит в состав Специальной астрофизической обсерватории Российской академии наук и установлен на Северном Кавказе (близ станицы Зеленчукская в Кабардино-Балкарии) на высоте 2100 м над уровнем моря.

Рис. 1.7. Шестиметровый телескоп-рефлектор.
Рис. 1.7. Шестиметровый телескоп-рефлектор.
  • Для приёма радиоизлучения различных космических объектов используются радиотелескопы. Основные элементы устройства радиотелескопа — это антенна, приёмник и приборы для регистрации сигнала. У большинства радиотелескопов антенны, которые достигают в диаметре 100 м, по форме такие же, как вогнутые зеркала телескопа-рефлектора (рис. 1.8), но собирающие не свет, а радиоволны. Ведь чем больше площадь антенны, тем более слабый источник радиоизлучения можно зарегистрировать.
Рис. 1.8. Радиотелескоп.
Рис. 1.8. Радиотелескоп.

Антенна преобразует принятые ею электромагнитные волны в электрические сигналы, которые затем передаются к высокочувствительному приёмнику. В современных радиотелескопах для регистрации сигналов используется компьютер, который сначала запоминает их в цифровой форме, а затем представляет полученные результаты в наглядном виде.