Найти в Дзене
Домашняя школа

Алгебра . Подобные . Умножение многочленов

В некоторых многочленах одночлены могут соединяться знаком «минус». Например, 3x − 5y − 2x. Следует иметь ввиду, что это по-прежнему сумма одночленов. Многочлен 3x − 5y − 2x это сумма одночленов 3x, −5y и − 2x, то есть 3x + (−5y) + (−2x). После раскрытия скобок образуется многочлен 3x − 5y − 2x. 3x + (−5y) + (−2x) = 3x − 5y − 2x Соответственно, рассматривая по отдельности каждый одночлен многочлена, его нужно рассматривать вместе со знаком, который перед ним располагается. Так, в многочлене 3x − 5y − 2x минус перед одночленом 5y относится к коэффициенту 5, а минус перед одночленом 2x относится к коэффициенту 2. Чтобы не противоречить определению многочлена, вычитание можно заменять сложением: 3x − 5y − 2x = 3x + (−5y) + (−2x) Но это действие нагромождает многочлен скобками, поэтому вычитание на сложение не заменяют, учитывая в будущем, что каждый одночлен многочлена будет рассматриваться вместе со знаком, который перед ним располагается. Одночлены, из которых состоит многочлен, называ

В некоторых многочленах одночлены могут соединяться знаком «минус». Например, 3x − 5y − 2x. Следует иметь ввиду, что это по-прежнему сумма одночленов. Многочлен 3x − 5y − 2x это сумма одночленов 3x, −5y и − 2x, то есть 3x + (−5y) + (−2x). После раскрытия скобок образуется многочлен 3x − 5y − 2x.

3x + (−5y) + (−2x) = 3x − 5y − 2x

Соответственно, рассматривая по отдельности каждый одночлен многочлена, его нужно рассматривать вместе со знаком, который перед ним располагается. Так, в многочлене 3x − 5y − 2x минус перед одночленом 5y относится к коэффициенту 5, а минус перед одночленом 2x относится к коэффициенту 2. Чтобы не противоречить определению многочлена, вычитание можно заменять сложением:

3x − 5y − 2x = 3x + (−5y) + (−2x)

Но это действие нагромождает многочлен скобками, поэтому вычитание на сложение не заменяют, учитывая в будущем, что каждый одночлен многочлена будет рассматриваться вместе со знаком, который перед ним располагается.

Одночлены, из которых состоит многочлен, называют членами многочлена.

Если многочлен состоит из двух членов, то такой многочлен называют двучленом. Например, многочлен x + y является двучленом.

Если многочлен состоит из трёх членов, то такой многочлен называют трехчленом. Например, многочлен x + y + z является трехчленом.

Если какой-нибудь многочлен содержит обычное число, то это число называют свободным членом многочлена. Например, в многочлене 3x + 5y + z + 7 член 7 является свободным членом. Свободный член многочлена не содержит буквенной части.

-2

Также подобными слагаемыми можно считать и числа без буквенной части, например 8 и 2.

-3

-4
-5
-6
-7
-8
-9
-10

Заметим, что при перемножении происходит сложение степеней многочленов.

-11

==============================================================

-12
-13
-14
-15
-16
-17
-18

Выполним это умножение:

(x + 3)(y + 4) = xy + 3y

Мы умножили (x + 3) на y. Теперь осталось умножить (x + 3) на 4. Для этого умножаем каждый член многочлена (x + 3) на одночлен 4. На этот раз в исходном выражении (x + 3)(y + 4) рукой закроем y, поскольку на него мы уже умножали многочлен (x + 3)

-19

Получаем умножение многочлена (+ 3) на одночлен 4. Выполним это умножение. Умножение необходимо продолжать в исходном примере (+ 3)(+ 4) = xy + 3y

(+ 3)(+ 4) = xy + 3y + 4x + 12

Таким образом, при умножении многочлена (+ 3) на многочлен (+ 4) получается многочлен xy + 3y + 4x + 12.

По другому умножение многочлена на многочлен можно выполнить ещё так: каждый член первого многочлена умножить на второй многочлен целиком и полученные произведения сложить.

(+ 3)(+ 4) = x(+ 4) + 3(+ 4)

(+ 3)(+ 4) = x(+ 4) + 3(+ 4) = xy + 4x + 3y + 12

(6 + 2)(3 + 1) = 32

6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 32

(6 + 2)(3 + 1) = 6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 18 + 6 + 6 + 2 = 32

=======================================================

Пример Выполнить умножение (−− 2y)(+ 2y^2)

у^ 2 -обозначает у во второй степени

-20
-21
-22
-23
-24
-25

==============================================================

Правило умножения двучленов:

(a + b) * (c + d) = ac + ad + bc + bd.

Правило умножения двучлена на трехчлен:

(a + b + c) * (x + y) = ax + bx + cx + ay + by + cy.

Правило перемножения трехчленов:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc.

Эти правила можно описать так: чтобы умножить один многочлен на другой, нужно каждый член первого умножить на каждый член второго многочлена. Затем полученные произведения сложить и привести результат к многочлену стандартного вида, если это возможно.

-26
-27
-28
-29

-30
-31
-32

-33
-34

Если быстрое перемножение многочленов на первых порах даётся тяжело, можно воспользоваться подробным решением, суть которого заключается в том, чтобы записать, как каждый член первого многочлена умножается на весь второй многочлен целиком. Такая запись хоть и занимает место, но позволяет свести к минимуму допущение ошибок.

Например, выполним умножение (a + b)(c + d)

Запишем как каждый член многочлена a + b умножается на весь многочлен c + d целиком. В результате придём к умножению одночлена на многочлен, выполнять которое проще:

(a + b)(c + d) = a(с + d) + b(с + d) = aс + ad + bс + bd

Такая запись удобна при умножении двучлена на какой-нибудь многочлен, в котором содержится больше двух членов. Например:

-35
-36
-37

Обратим внимание на то, что первый многочлен содержит два члена, второй многочлен содержит три члена, а многочлен, который получился в результате умножения, до приведения подобных содержит 2 * 3 = 6 членов

Если многочлен, содержащий n членов, умножается на многочлен, содержащий m членов, то в произведении (до приведения подобных членов) получается многочлен, содержащий n * m членов. Этим фактом можно пользоваться для самопроверки.

-38
-39
-40
-41
-42
-43
-44
-45

-46
-47

-48
-49

-50
-51

-52

-53
-54
-55
-56
-57
-58

Материал взят из инета