Найти тему

Квадратный трехчлен. Корни квадратного трехчлена. Разложение квадратного трехчлена на множители.

Оглавление

Всем привет! В этой статье разбираем необходимый минимум про квадратный трехчлен. Учимся находить корни и раскладывать на множители. Жмите палец вверх, мне за полезную статью и подписывайтесь на мой канал, чтобы готовиться к ЕГЭ по математике вместе со мной!

Квадратным трехчленом называется многочлен вида ax^2 + bx + c, где a, b, c - некоторые числа, причем a ≠ 0, а x - переменная.

Про корни квадратного трехчлена

Корнем квадратного трехчлена называют значение переменной x, при котором значение этого трехчлена равно нулю.

Для того чтобы найти корни квадратного трехчлена, нужно решить уравнение вида:

-2

Квадратный трехчлен, так же как и квадратное уравнение может иметь два корня, один корень или не иметь корней вообще.

Для нахождения корней, необходимо найти дискриминант квадратного трехчлена по формуле:

-3
  • Если дискриминант больше нуля, то квадратный трехчлен имеет два корня.
  • Если дискриминант равен нулю, то квадратный трехчлен имеет один корень.
  • Если дискриминант меньше нуля, то квадратный трехчлен не имеет корней.

Корни квадратного трехчлена находятся по формуле:

-4

Разложение квадратного трехчлена на множители

-5

Где x(1) и x(2) корни квадратного трехчлена. Причем если D = 0, то считают что трехчлен имеет два одинаковых корня.

Если квадратный трехчлен не имеет корней, то его нельзя разложить на множители.